Все лекции для врачей удобным списком

Лекция для врачей "Сосудистая дистония. РЭГ исследование сосудов головного мозга". Часть 6

Содержание

РЭГ исследование сосудов головного мозга. Часть 1

УЗИ или РЭГ. Аспекты применения реоэнцефалографии для оценки мозгового кровообращения. Часть 2

Анализ реографической (РЭГ) кривой. Часть 3

Методика проведения реоэнцефалографии (РЭГ). Исследование мозгового кровотока. Часть 4

Изменение РЭГ при артериальной гипертензии. Часть 5

Изменение РЭГ при атеросклерозе. РЭГ исследование сосудов головного мозга. Часть 7

Изменение венозного кровоснабжения мозга и внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 8

Внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 9

Нарушения мозгового кровообращения. РЭГ исследование сосудов головного мозга. Часть 10

Изменения РЭГ при нарушении проходимости артерий головного мозга. РЭГ исследование сосудов головного мозга. Часть 11

Закрытая черепно-мозговая травма. РЭГ исследование сосудов головного мозга. Часть 12

Функциональные пробы в РЭГ. РЭГ исследование сосудов головного мозга. Часть 13

Артефакты при регистрации реограмм. РЭГ исследование сосудов головного мозга. Часть 14

Патологии. РЭГ исследование сосудов головного мозга. Часть 15

Сосудистая дистония принадлежит к числу заболеваний, которые очень трудно установить по клиническим проявлениям или с помощью специальных методов исследования. Многочисленные и разнообразные жалобы, предъявляемые больными, неустойчивость вегетативных функций, лабильность артериального давления являются основанием для постановки подобного диагноза, но за этими проявлениями может скрываться и ряд других заболеваний. При установлении диагноза сосудистой дистонии, если понимать его буквально как неустойчивость сосудистого тонуса в результате нарушения местных или чаще центральных механизмов сосудистой регуляции, реография является практически единственным методом, дающим эту возможность.

На реограмме при сосудистой дистонии определяется неустойчивость сосудистого тонуса в виде последовательного чередования через неправильные промежутки времени нормального, повышенного или пониженного тонуса. В зависимости от преобладания тех или иных тонических изменений можно условно выделить типы сосудистой дистонии: гипертонический, гипотонический или нормотонический. Чаще всего встречается сосудистая дистония по гипертоническому (рис. 32), реже — по гипотоническому типу (рис. 33).

Рис. 32. Сосудистая дистония по гипертоническому типу

Рис. 32. Сосудистая дистония по гипертоническому типу

Сосудистая дистония может быть как пространственной, так и временной. В первом случае различные нарушения наблюдаются одновременно в разных участках (отведениях), во втором - сменяются на одном отрезке кривой.

Рис. 33. Сосудистая дистония по гипотоническому типу

Истинную сосудистую дистонию следует отличать от сосудистой дистонии дыхательного происхождения, когда колебания сосудистого тонуса носят периодический характер, синхронизируясь во времени с дыхательным циклом. Сосудистая дистония крайне редко бывает самостоятельным заболеванием, чаще она является признаком других заболеваний или сопровождает их.

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Лекция для врачей "РЭГ при артериальной гипертензии". Часть 5. Лекция для врачей

Содержание

РЭГ исследование сосудов головного мозга. Часть 1

УЗИ или РЭГ. Аспекты применения реоэнцефалографии для оценки мозгового кровообращения. Часть 2

Анализ реографической (РЭГ) кривой. Часть 3

Методика проведения реоэнцефалографии (РЭГ). Исследование мозгового кровотока. Часть 4

Сосудистая дистония. РЭГ исследование сосудов головного мозга. Часть 6

Изменение РЭГ при атеросклерозе. РЭГ исследование сосудов головного мозга. Часть 7

Изменение венозного кровоснабжения мозга и внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 8

Внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 9

Нарушения мозгового кровообращения. РЭГ исследование сосудов головного мозга. Часть 10

Изменения РЭГ при нарушении проходимости артерий головного мозга. РЭГ исследование сосудов головного мозга. Часть 11

Закрытая черепно-мозговая травма. РЭГ исследование сосудов головного мозга. Часть 12

Функциональные пробы в РЭГ. РЭГ исследование сосудов головного мозга. Часть 13

Артефакты при регистрации реограмм. РЭГ исследование сосудов головного мозга. Часть 14

Патологии. РЭГ исследование сосудов головного мозга. Часть 15

Изменения РЭГ при артериальной гипертензии зависят от стадии заболевания. В начальных стадиях болезни РЭГ указывает на изменения вазомоторного тонуса (его повышение), при этом появляются обычно признаки повышения тонуса сосудов мелкого калибра (восходящее систолическое плато, высокое расположение инцизуры и смещение вверх дикротического зубца, повышение дикротического индекса). Отмечаются также некоторые признаки затруднения венозного оттока (становятся выпуклой и растянутой нисходящая волна, увеличивается диастолический индекс) (рис. 29).

Для выраженной артериальной гипертензии характерно заметное уменьшение кровенаполнения мозга на фоне значительного повышения тонуса мозговых сосудов (рис. 30). В склеротической стадии гипертонической болезни признаки повышения мозгового сосудистого сопротивления более выражены, кривая принимает иногда аркообразную форму (рис. 31).

Рис. 29. Изменение РЭГ при начальной стадии артериальной гипертензии

Рис. 29. Изменение РЭГ при начальной стадии артериальной гипертензии

Рис. 30. РЭГ при выраженной артериальной гипертензии

Рис. 30. РЭГ при выраженной артериальной гипертензии

Рис. 31. Изменения РЭГ при склеротической стадии артериальной гипертензии

Рис. 31. Изменения РЭГ при склеротической стадии артериальной гипертензии

Для удобства анализа и сопоставления реоэнцефалограммы при гипертонической болезни распределяют на 4 типа по степени нарастания изменений конфигурации волн, увеличения времени восходящей части и снижения амплитуды волн РЭГ.

При нормальной I типа реоэнцефалограмме регистрируются острые вершины, хорошо выраженные дикротические зубцы, расположенные, как правило, в средней трети нисходящей части волны. Время восходящей части равняется 0,08-0,12с, амплитуда волн реоэнцефалограммы равна 0,12-0,15 Ом (РИ- 1,2-1,5).

Для II типа реоэнцефалограммы характерны небольшие изменения формы волны: закругление вершин, иногда наличие плато, сглаженность дикротического зубца в верхней трети нисходящей части волн, увеличение а до 0,16-0,23 с и уменьшение амплитуды до 0,08-0,1 Ом.

При III типе РЭГ отмечаются выраженное закругление вершин, значительная сглаженность или отсутствие дикротических зубцов в верхней трети нисходящей части, увеличение а до 0,23-0,26 с и уменьшение амплитуды до 0,09-0,1 Ом (РИ-0,9-1,0).

Для IV типа реоэнцефалограммы характерно значительное снижение амплитуды волн (0,05 Ом и менее), сглаженность или уплощение вершин и дикротических зубцов, формирование аркообразных кривых.

При нитроглицериновой пробе РЭГ П типа переходит в I тип, что указывает на функциональный характер изменения кровообращения в головном мозге. Влияние нитроглицерина на III тип реограмм отличается от предыдущей группы менее выраженным сдвигом исходной кривой, торпидной реакцией. У больных с IV типом РЭГ при нитроглицериновой пробе выявляется небольшое увеличение амплитуды и отсутствие нормализации волн по сравнению с исходной кривой, что указывает на преобладание органических изменений в сосудах головного мозга у этих больных.

В ответ на длительное воздействие повышенного артериального давления увеличивается тонус сначала мелких, а затем и крупных сосудов, повышается периферическое сосудистое сопротивление, затрудняется венозный отток, и в конечном итоге наступает дисфункция венозного кровообращения.




















Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Лекция для врачей "Методика проведения реоэнцефалографии (РЭГ). Исследование мозгового кровотока". Часть 4. 

Содержание 

РЭГ исследование сосудов головного мозга. Часть 1

УЗИ или РЭГ. Аспекты применения реоэнцефалографии для оценки мозгового кровообращения. Часть 2

Анализ реографической (РЭГ) кривой. Часть 3

Изменение РЭГ при артериальной гипертензии. Часть 5

Сосудистая дистония. РЭГ исследование сосудов головного мозга. Часть 6

Изменение РЭГ при атеросклерозе. РЭГ исследование сосудов головного мозга. Часть 7

Изменение венозного кровоснабжения мозга и внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 8

Внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 9

Нарушения мозгового кровообращения. РЭГ исследование сосудов головного мозга. Часть 10

Изменения РЭГ при нарушении проходимости артерий головного мозга. РЭГ исследование сосудов головного мозга. Часть 11

Закрытая черепно-мозговая травма. РЭГ исследование сосудов головного мозга. Часть 12

Функциональные пробы в РЭГ. РЭГ исследование сосудов головного мозга. Часть 13

Артефакты при регистрации реограмм. РЭГ исследование сосудов головного мозга. Часть 14

Патологии. РЭГ исследование сосудов головного мозга. Часть 15

РЭГ исследование проводят:

1. Натощак или через 1,5-2 часа после еды

2. За 10-15 мин. до исследования больной с уже наложенными электродами должен находиться в удобном положении лежа или сидя. Необходимо помнить, что в вертикальном и горизонтальном положениях реограммы имеют существенные отличия. Для первого случая нормативы в нашей системе предусмотрены только для реоэнцефалографии.

3. При температуре окружающей среды 20-25°С (чтобы исключить охлаждение или перегревание больного, для исключения мышечного тремора).

4. При надежном контакте электродов с кожей.

Скорость движения бумаги при проведении исследования - 25-50 мм/с.

Величина калибровочного сигнала должна быть соизмерима с величиной амплитуды реографической волны (отличаться от нее не более, чем на 30-50%). Существуют два способа подачи калибровочного сигнала: до начала исследования и в процессе исследования, когда калибровочный сигнал накладывается на реографическую волну (обычно на ее нисходящую часть). Форма калибровочного импульса наиболее постоянна при его нахождении на нижней трети нисходящего колена кривой реограммы. Обычно используют калибровочный сигнал 0,1 Ом, можно задавать и другие его значения (0,05; 0,2; 0,5 Ом).

Для расчетов показателей используют среднее значение 5-10 пульсовых волн. Запись ведут либо при свободном дыхании, либо (при наличии выраженных дыхательных волн) при задержке дыхания больного в положении, среднем между вдохом и выдохом (т.е. больной должен неглубоко вдохнуть и слегка выдохнуть).

Синхронно с реограммой (РГ), если позволяют технические возможности реографа, целесообразно проводить регистрацию одного из отведений электрокардиограммы, чтобы иметь возможность сопоставить отдельные параметры пульсовой волны с деятельностью сердца. Для сопоставления показателей реограмм разных лиц необходимо сохранять одно и то же расстояние между электродами и учитывать возрастные нормы.

Используются следующие органные методики реографии: реоэнцефалография (РЭГ) - исследование мозгового кровотока, реовазография (РВГ) - анализ кровотока в сосудах верхних и нижних конечностей, реография аорты и легочной артерии, тетраполярная грудная реография (ТГР), реогепатография, реонефрография, общая интегральная реография по Тищенко. В литературе описаны также реоокулография, реоутерография, реопародонтография и т.д

В последнее время появилось несколько модификаций импедансной томографии, когда на исследуемый участок (грудная клетка, голова, конечности) накладывают по окружности несколько электродов, регистрируют сопротивление между всеми их парами и с помощью компьютера получают срез тканей, различающихся по электрической проводимости. Недавно стало возможным длительное исследование центральной гемодинамики с помощью носимых цифровых устройств.

Оптимальной частотой зондирующего тока при проведении РЭГ- исследования является 80-150 кГц - именно при таких значениях сводится к минимуму эффект поляризации, возникающий на границе электрод-ткань, что дает возможность просканировать биологический объект более глубинно.

Для РЭГ наиболее целесообразно использовать круглые электроды диаметром 1,5-2 см, толщиной 3-4 мм. Использование электродов меньшего диаметра приводит к искажению формы реографической волны, а значительно больших — не позволяет установить точную локализацию отведения.

Существуют два основных способа прикрепления электродов при проведении РЭГ:

1. При помощи резиновых прижимающих полос различной длины. Резиновые полосы имеют отверстия и посредством специальных клемм соединяются друг с другом. Одна полоса располагается вокруг головы, вторая — вдоль. В эти же отверстия вставляют зажимной винт электрода, что обеспечивает его надежную фиксацию в нужном месте в зависимости от выбранного отведения.

2. При помощи клеющих составов или лейкопластыря. При обычных диагностических исследованиях, производимых в стационарных условиях, достаточно хорошей фиксации электродов можно добиться с помощью резиновых лент, но при проведении исследований в нестационарных условиях, у беспокойных пациентов или тяжелобольных, при необходимости беспрерывной длительной записи возникает необходимость прибегнуть ко второму способу крепления электродов или даже к их сочетанию.

При реоэнцефалографии предложено множество отведений, дающих информацию о кровоснабжении головного мозга (рис. 21). Одним из достоинств метода является предоставление возможности раздельного изучения гемодинамики в каждом из трех основных сосудистых бассейнов головы: внутренней сонной артерии, позвоночной артерии и наружной сонной артерии.

Наиболее часто употребляемым является отведение, дающее информацию о бассейне внутренней сонной артерии, т.к. последняя является основным магистральным сосудом головы в обеспечении кровью больших полушарий головного мозга. При этом используют следующие наложения электродов: один электрод укрепляют в области переносья на 1 ,5 см кнаружи от средней линии, а второй ставят на сосцевидный отросток, поэтому отведение называется лобно-сосцевидным (фронтомастоидальное, F-М). Поскольку обычно производят одновременную запись РЭГ двух полушарий, очень важно следить за строгой симметричностью наложения электродов, что относится и к другим отведениям, используемым для симметричной записи.

Рис. 21. Схема расположения электродов при реоэнцефалографии

Рис. 21. Схема расположения электродов при реоэнцефалографии

Другим широко применяемым и практически важным является отведение, предоставляющее информацию о гемодинамике в системе позвоночной артерии или, что более точно, в вертебробазиллярном бассейне. Достигается это отведение наложением одного электрода на область сосцевидного отростка, а другого — на край большого затылочного отверстия — окципитомастоидальное отведение (О-М). Другим вариантом отведения реограмм позвоночной артерии является наложение электродов непосредственно в области шеи: один — на уровне II, другой — на уровне VI шейного позвонка.

Кроме этих стандартных отведений, имеется целый ряд других, используемых значительно реже. Для получения информации о гемодинамике в системе наружной сонной артерии обычно используют сведения, получаемые при реографическом отведении с бассейна наружной височной артерии. Для этого электроды располагают по ходу височной артерии: один около наружного слухового прохода, в другой у наружного края надбровной дуги.

Некоторые исследователи предлагают бифронтальное, битемпоральное, бимастоидальное и биокципитальное отведение. Подобные отведения, по мнению авторов, позволяют разграничить кровоснабжение передних и задних отделов головного мозга. Однако значение этих отведений в практических исследованиях весьма ограничено, так как поперечные отведения дают представления о суммарном кровотоке обоих полушарий, что приводит к диагностическим ошибкам.

При наложении электродов на волосистую часть головы необходимо раздвинуть волосы в месте наложения электродов и тщательно обработать кожу. Тщательно проведенная подготовка больного к исследованию, хорошо зафиксированные электроды являются гарантией исключения возможных артефактов, особенно связанных с движениями электродов или человека, и получения качественных, достоверных реографических кривых.

Для получения устойчивых записей реограмм немаловажное значение имеет положение больного во время исследования, так как неудобное для больного положение не позволяет ему расслабиться, приводит к напряжению, непроизвольным движениям, усилению дыхательных движений и т. д., что в свою очередь способствует появлению артефактов на реографической кривой.

Реоэнцефалограмма в норме

Состояние пульсового кровенаполнения, эластичности и тонуса мозговых сосудов определяют по данным как качественной оценки, так и количественного анализа основных параметров РЭГ.

Уже визуальный анализ РЭГ дает представление о нормальной или патологической кривой. Нормальная реоэнцефалограмма характеризуется высокой амплитудой, заостренной вершиной у лиц молодого возраста (до 30 лет), либо наличием горизонтального, седловидного или нисходящего плато у лиц более старшего возраста; крутым восходящим коленом реографической волны, хорошо выраженной инцизурой и дикротическим зубцом, расположенным на уровне верхних 2/3 или 1/2 амплитуды систолической волны. Нисходящая часть обычно плоская или слегка выпуклая (рис.22).

Рис. 22. Реоэнцефалограмма в норме

Рис. 22. Реоэнцефалограмма в норме

Чаще всего амплитуда полушарных РЭГ колеблется от 0,11-0,2 Ом (в среднем 0,15 Ом); РИ 1,1--2,0 (в среднем 1,5). Пределы колебаний АПР затылочных РЭГ - от 0,075 до 0,15 Ом (в среднем О,11 Ом); РИ колеблется от 0,75 до 1,5 (в среднем 1,1); а составляет от 0,06 до 0,12 с; РК - около 16%; ДКИ составляет 40-70%, а ДСИ - 50-70%. Время распространения волны составляет 0,15-0,16 с. Угол подъема восходящей части в норме около 80 градусов. Коэффициент межполушарной асимметрии не более 10-20%.

При анализе кривых нужно помнить, что те или иные волны отражают состояние кровотока того или иного типа сосудов (артерии различного калибра, артериолы, вены) лишь косвенно. Они образуются в результате суммирования отраженных колебаний с учетом упруго-эластических свойств кровеносного русла, его гидродинамического сопротивления на различных уровнях, рефлекторных реакций артериол и артерий мышечного типа на переполнение или освобождение путей притока и оттока. Сглаженные аркообразные кривые указывают на отказ органных механизмов регуляции кровотока, переход к центральному его типу, который не способен адекватно приспосабливаться к метаболическим потребностям органов и тканей.

Не всегда патология проявляется снижением амплитуды волн. Они увеличиваются при артериовенозных аневризмах, во время приступа мигрени, при контузии головного мозга, при патологической извитости внутренних сонных артерий.

Возрастные особенности РЭГ

Состояние сердечно-сосудистой системы в значительной степени зависит от возраста человека, что находит соответствующее отражение на реографических кривых. Показатели реограмм в различных возрастных группах существенно отличаются, свидетельствуя о разном функциональном и структурном состоянии сосудов, в том числе и сосудов головного мозга. Естественные возрастные изменения сердечно-сосудистой системы должны учитываться при оценке реографических кривых.

Можно отметить определенную закономерность в изменениях реографических показателей у детей по возрастным группам. Это в первую очередь касается величины амплитуды волн. Кровенаполнение в церебральных сосудах у детей больше, чем у взрослых. Средняя амплитуда волн у детей 4—6 лет относительно стабильна и равна 0,23 Ом. В 6-летнем возрасте пульсовое кровенаполнение сосудов мозга несколько уменьшается (АПР около 0,20 Ом). Этот показатель не меняется до 11 лет, когда происходит дальнейшее уменьшение кровенаполнения (до 0,17 Ом). Затем отмечается некоторое увеличение величины кровенаполнения (0,20 Ом в 14-летнем возрасте), что соответствует второму периоду бурного роста сердца. В 15 лет амплитуда волн РЭГ снижается до 0,15 Ом, соответствуя средним значениям амплитуды у взрослых.

Время восходящей части волны является, как и у взрослых, наиболее стабильным показателем. У детей в возрасте 4—13 лет оно составляет около 0,09 с (иногда несколько меньше, что свидетельствует о большей, чем у взрослых, «податливости», растяжимости сосудистой стенки), а в 14-летнем возрасте этот показатель достигает величины его у взрослых.

Динамика всех остальных показателей, указывающих на тоническое состояние сосудов, свидетельствует о том, что повышенный у дошкольников и подростков сосудистый тонус постепенно понижается и практически нормализуется к 15 годам.

Основные показатели РЭГ у детей в норме представлены в таблице

Значения основных показателей РЭГ у детей в норме (Зенков Л.Р., Ронкин М.А, 2004)

Возраст

Амплиту­да, Ом

Время восходящей части волны а,с

а/Т, %

Время распро­странения волны

Q-ас

4

0,22

0,09

15,6

0,11

5

0,23

0,09

15

0,13

6

0,2

0,09

15,9

0,13

7

0,2

0,09

15,1

0,13

8

0,2

0,09

15,5

0,13

9

0,2

0,09

15,4

0,13

10

0,2

0,09

15,3

0,13

11

0,17

0,09

14,2

0,13

12

0,18

0,09

14.2

0,15

13

0,19

0,09

14,2

0,15

14

0,2

0,1

14,4

0,15

15

0,15

0,1

14,7

0,15

Обращают на себя внимание очень большая изменчивость, неустойчивость реографических волн у детей, отсутствие регулярности, свойственной реограммам взрослых. В связи с этим однократное исследование не всегда позволяет правильно оценить состояние мозговой гемодинамики. Повторное исследование РЭГ после адаптации ребенка к обстановке во многих случаях дает несколько иные результаты, чем первое, способствуя нормализации тонуса и уменьшению сосудистой лабильности.

С возрастом постепенно, относительно медленно, но неуклонно происходят изменения реографических показателей (рис. 23). Функциональные и структурные изменения сосудистой стенки и возрастные изменения гемодинамики в процессе старения организма наступают гораздо раньше периода старости и обычно намного раньше того периода, когда они клинически проявляются.

Было отмечено, что у лиц в возрасте 30-39 лет заметны некоторые изменения формы реографических кривых. Визуально большинство РЭГ у лиц этого возраста имеют форму, типичную для нормы, однако у части из них отмечаются некоторые изменения угла наклона восходящей части. Время восходящей части увеличивается, достигая 0,15 с. Дополнительные волны на нисходящей части выражены хорошо. В этом возрасте иногда встречаются и видоизмененные реографические волны, свидетельствующие о некотором повышении периферического сосудистого сопротивления, а также изредка так называемые горбовидные волны.

Рис. 23. Возрастные изменения реоэнцефалограммы

Рис. 23. Возрастные изменения реоэнцефалограммы

У лиц в возрасте 40-49 лет наиболее типичной также бывает нормальная форма реографических кривых, но признаки повышения сосудистого тонуса и периферического сосудистого сопротивления встречаются все чаще. Вершина волны становится несколько уплощенной, а время восходящей части увеличивается до 0,17 с.

У лиц в возрасте 50-59 лет подъем восходящей части волны менее крутой, вершина редко бывает остроконечной, она становится более закругленной или уплощенной. В ряде случаев могут наблюдаться волны типа аркообразных, но с выраженными дополнительными волнами на нисходящей части. Время восходящей части заметно увеличивается - до 0,20 с.

У большинства лиц в возрасте 60 лет и старше наблюдаются более значительные изменения формы реографической кривой, появляются аркообразные волны, дополнительные волны становятся менее выраженными, а иногда бывают совершенно сглаженными. В возрасте 60-69 лет время восходящей части волны составляет в среднем 0,22 с, в 70-79 лет - 0,23 с, старше 80 лет -0,24 с. Все это свидетельствует о том, что у лиц старше 60 лет отмечаются значительные изменения эластичности и растяжимости сосудов головного мозга, а также повышение сосудистого тонуса различной степени выраженности.

При оценке формы кривой важно правильное опознание истиной вершины систолической волны, за которую нередко принимают дополнительное колебание, вызванное спазмом артериол. Высшую точку РЭГ у здоровых молодых людей образует первая вершина, а у пожилых - чаще другие элементы систолической части кривой.

Изменение тонуса сосудов

К нормотоническому типу относятся кривые РЭГ с круто поднимающимся начальным отрезком кривой (угол наклона 70-80 градусов), плавно переходящим в умеренно заостренную вершину без дополнительных волн, за которой следует инцизура на уровне 1 /2 - 2/3 основной вершины и затем - умеренно выраженная диастолическая волна, имеющая линейное или вогнутое нисходящее колено, переходящее непосредственно в следующий систолический подъем (рис. 22).

Повышение тонуса подразделяется на 4 степени (Шток В.Н., Ронкин М.А.,и соав., 1996)

При небольшом повышении тонуса I степени в начале нисходящего участка систолической волны появляется более или менее выраженная поздняя систолическая волна. Инцизура и дикротический зубец отчетливы («седлообразная вершина») (рис. 24)

Рис. 24. Повышение тонуса сосудов I степени

Рис. 24. Повышение тонуса сосудов I степени

Умеренное повышение тонуса II степени приводит к образованию платообразной вершины, сглаживанию инцизуры и диастолической волны («плоская вершина») (рис. 25).

Рис. 25. Повышение тонуса сосудов II степени

Выраженное повышение артериального тонуса III степени проявляется куполообразной кривой, когда при сглаженной инцизуре и дикротическом зубце имеется поздняя систолическая волна, превышающая основную (рис. 26).

Рис. 26. Повышение тонуса сосудов III степени

Рис. 26. Повышение тонуса сосудов III степени

Наиболее значительно повышение тонуса IV степени приводит к формированию аркообразной кривой, подъем которой замедлен (угол менее 60-70 градусов), вершина единая, дикротической волны нет, время наполнения (от начала подъема до вершины) увеличено и превышает 25% продолжительности всего цикла (рис. 27).

Рис. 27. Повышение тонуса сосудов IV степени

Отчетливых отличий между значительным повышением тонуса и снижением эластичности нет, поэтому некоторые авторы (Иванов Л.Б.) предлагают даже исключить оценку эластичности из реографического заключения. Для разграничения этих состояний обычно рекомендуют проводить пробу со спазмолитиками (1/4 таблетки нитроглицерина, эуфилиин, папаверин). Если форма кривой не изменится, то определяют снижение эластичности, а если она приблизится к норме, то был повышен тонус.

Рис. 28. Изменение РЭГ при снижении тонуса сосудов

Для сниженного тонуса артерий характерны более крутые подъем и спад систолической кривой, заострение ее вершины, низкое расположение инцизуры, выраженный дикротический зубец, иногда - дополнительные волны на его нисходящем участке. При крайней выраженности снижения сосудистого тонуса (атонии) инцизура может быть расположена даже ниже изолинии (рис. 28).

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Лекция для врачей "Анализ реографической (РЭГ) кривой". Часть 3.

Содержание

РЭГ исследование сосудов головного мозга. Часть 1

УЗИ или РЭГ. Аспекты применения реоэнцефалографии для оценки мозгового кровообращения. Часть 2

Методика проведения реоэнцефалографии (РЭГ). Исследование мозгового кровотока. Часть 4

Изменение РЭГ при артериальной гипертензии. Часть 5

Сосудистая дистония. РЭГ исследование сосудов головного мозга. Часть 6

Изменение РЭГ при атеросклерозе. РЭГ исследование сосудов головного мозга. Часть 7

Изменение венозного кровоснабжения мозга и внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 8

Внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 9

Нарушения мозгового кровообращения. РЭГ исследование сосудов головного мозга. Часть 10

Изменения РЭГ при нарушении проходимости артерий головного мозга. РЭГ исследование сосудов головного мозга. Часть 11

Закрытая черепно-мозговая травма. РЭГ исследование сосудов головного мозга. Часть 12

Функциональные пробы в РЭГ. РЭГ исследование сосудов головного мозга. Часть 13

Артефакты при регистрации реограмм. РЭГ исследование сосудов головного мозга. Часть 14

Патологии. РЭГ исследование сосудов головного мозга. Часть 15

Анализ реографической кривой

Составляющие реографической волны

Реографическая волна имеет основную систолическую волну с крутым восходящим коленом (анакрота, а), которое ближе к вершине становится более пологим; за вершиной следует нисходящее колено (катакрота, в), на котором имеются две-три дополнительные волны. Между основной волной и первой дополнительной, называемой дикротической, находится выемка - инцизура (рис. 8). Происхождение этих волн связано не столько с кровенаполнением сосудов того или иного калибра и даже не с балансом притока и оттока в них, сколько с суммой вторичных колебаний, вызванных множественным отражениями пульсовой волны от бифуркаций и сужений сосудов.

Рис. 8. Реографическая кривая

Рис. 8. Реографическая кривая

Электрическое сопротивление тканей зависит от площади сечения сосудов, скорости движения крови и количества эритроцитов. Во время прохождения пульсовой волны эти величины растут, а сопротивление уменьшается. Кривая напоминает сфигмограмму, перевернутую вершиной вниз. Для сохранения физиологического смысла кривых их записывают в перевернутой полярности, чтобы они соответствовали кровенаполнению (рис.9).

Географическая волна отражает фазные изменения кровенаполнения сосудов соответственно сердечному циклу. Записывая одновременно ЭКГ, фонокардиограмму, сфигмограмму сонной артерии и реограмму можно различить не только периоды систолы и диастолы, но также их фазы и подфазы (рис.10).

Рис. 9. Происхождение реограммы

Рис. 9. Происхождение реограммы

Отрезок кривой от первого высокого компонента I тона до начала восходящей части соответствует фазе изометрического сокращения желудочков, участок реограммы от начала анакротической фазы до наивысшей ее точки - подфазе быстрого изгнания крови (период максимального растяжения сосудов кровью), отрезок от этой точки до точки окончания систолы - подфазе медленного изгнания. Затем начинается подфаза протодиастолы, которая оканчивается в наиболее низко расположенной точке инцизуры. Остальной отрезок кривой соответствует диастоле.

Форма кривой определяется крутизной наклона, конфигурацией анакротической и катакротической фаз кривой и особенно характером вершины. Вершина реограммы соответствует точке наибольших изменений электропроводности исследуемой области. Если изменения импеданса происходят с большой скоростью, то вершина заострена. Изменения электропроводности могут быть и замедленными, например, при спазме сосудов, когда вершина РГ приобретает форму «плато».

1- фаза изометрического сокращения желудочков

2- подфаза быстрого изгнания крови

3- подфаза медленного изгнания

4 - подфаза протодиастолы

5 – диастола

Дикротическая волна обусловлена отдачей или отражением столба крови от места быстрого нарастания периферического сопротивления. Так как давление отраженной волны происходит быстрее, чем его падение в связи с оттоком, то происходит растяжение стенок артериального русла исследуемой области, образуется дикротический зубец. Появление и выраженность дикротической волны в значительной степени определяется состоянием артериол, так как от величины просвета именно этого отдела сосудистого русла зависит периферическое сопротивление сосудов.

Отражение волн и прохождение волн в местах ветвления артерий оказывает очень важное влияние на формирование компонентов реоволны. В каждой артерии имеются на всем протяжении изгибы, приводящие в той или иной степени к отражению волн, однако отражение особенно существенно в местах ветвления артерий. Отражения ответственны за наиболее значительные изменения пульсовой волны.

В месте ветвления сосудов (бифуркации) имеется "падающая волна" следующая от сердца к периферии, "прошедшая волна", следующая после места бифуркации, и "отраженная волна" (рис. 11). Причем "отраженная волна" бежит в обратном направлении, от периферии к центру. Таких зон отражения в артериальной системе множество.

Рис. 11. Схема формирования отражений волн

Рис. 11. Схема формирования отражений волн

В аорте первый участок с заметной зоной отражения - место отхождения ветвей на дуге аорты. Обычно влияние волны этого отражения на конфигурацию кривой не влияют, так как она суммируется с самой крутой частью ее. Тем не менее, иногда это проявляется легкой неровностью или зазубриной на этой части кривой. Самое существенное влияние на конфигурацию кривой оказывает бифуркация аорты. Измерения показали, что общая площадь поперечного сечения бедренных артерий на 20% меньше площади поперечного сечения брюшной аорты. Именно поэтому влияние бифуркации аорты на конфигурацию РГ существенно. Время, в течение которого волна отражения распространится от бифуркации до корня аорты при длине отрезка у человека в среднем 60 см займет 0,1 сек, а с учетом предшествующего распространения от корня до бифуркации оно будет равно приблизительно 0,2 сек. На пульсовой кривой вернувшаяся "вторая волна отражения" приводит к формированию второй систолической волны. При гипотонических состояниях она значительно ниже первой систолической, при начальных гипертонических - они или равны (двугорбая волна) или вторая волна больше первой (рис. 12) При выраженных склеротических изменениях эти признаки существенно нивелируется.

Рис. 12. Вторая систолическая волна при гипотонических (а) и гипертони­ческих (б) состояниях

Рис. 12. Вторая систолическая волна при гипотонических (а) и гипертони­ческих (б) состояниях

Степень наполнения сосудистого русла во многом зависит от эластичности сосудистой стенки. Чем более растяжима сосудистая стенка, тем медленнее распространяется пульсовая волна и тем быстрее она ослабевает. Чем выше ее ригидность тем большая скорость распространения пульсовой волны, тем дольше она сохраняется, тем больше на ее формирование оказывает фактор множественности отраженных волн.

Сужение сосудов увеличивает размер отраженных волн. Основным местом, где наблюдается положительное отражение волны является "барьер" прекапиллярного сопротивления, который для пульсовой волны играет роль почти слепого конца. Здесь формируется дикротическая (диастолическая) волна, происхождение которой по данным литературы так противоречиво. В результате ретроградного следования эта главная отраженная волна составляет 30 - 40% ее первичной величины.

Природа пресистолической волны приписывается ретроградному кровенаполнению органа по венам в результате сокращения предсердий при "переполнении венозного русла" или, иначе говоря, увеличения объема преднагрузки. Пресистолическая волна характерный признак на реопульмонограммах и на реогепатограммах.

Иванов Л.В. и соав. исследовали влияние медикаментозного увеличения частоты сердечных сокращений на конфигурацию РГ, в том числе его влияние на амплитуду и положение пресистолической волны. Оказалось, что четкая привязка ее во времени к сокращению предсердий имеет место только при нормо- и брадикардии. При росте ЧСС на реографической кривой отмечается в разных группах неодинаковое "поведение" пресистолической волны. В одной группе пациентов на фоне нарастающей ЧСС наблюдалось постепенное перемещение пресистолической волны влево в сторону диастолической волны (рис. 13 а). Происходило постепенное их сближение, затем волны сливались полностью. Пресистолическая волна в этой группе строго соответствовала моменту сокращения предсердий, т.е. следовала за зубцом Р на ЭКГ. Во второй группе при росте частоты сердечных сокращений пресистолический зубец оказался независимым от времени сокращения предсердий. По мере укорочения интервала R-R на реограмме происходило сближение пресистолической волны с началом подъема реограммы следующего цикла вплоть до полного слияния начала пре- систолической волны с началом анакроты (рис. 13 б). Полученные данные, по мнению авторов, позволяют сделать вывод о неоднозначности трактовки появления пресистолической волны. В случаях, когда выявлена четкая временная привязанность пресистолической волны к моменту сокращения предсердий, независимо от частоты сердечных сокращений, ее генез как результат ретроградной венозной пульсации вполне вероятен. В других случаях появление ее можно предположить как результат гармоничных затухающих колебаний волн отражения.

Рис. 13. Изменение положения пресистолической волны в зависимости от частоты сердечных сокращений под влиянием атропина (объяснения в тексте)

Таким образом, главная систолическая волна возникает в результате отражения от начальных отделов аорты, как результат сложения множества последовательных отражений от каждого следующего друг за другом участков аорты. Кроме того, на величину амплитуды систолической волны, ее форму оказывает существенное влияние вся протяженность сосудистого русла, все факторы, формирующие периферическое сопротивление. Причиной появления дикротической волны можно считать отражение от мельчайших артерий и артериол, второй систолической волны - отражение от бифуркации аорты. Формирование пресистолической волны обусловлено в разных условиях или как результат ретроградной пульсации в крупных венах, вследствие сокращения предсердий, или, предположительно, результат затухающих колебаний отраженных волн.

Дифференциальная реограмма

Для более детального анализа кривая дифференцируется в приборе, превращаясь в запись скорости изменения сопротивления. Реограмма характеризует изменения объема исследуемой области во времени, а синхронно записанная ее первая производная отражает скорость изменений электрического сопротивления тканей, наступающих во время пульсового цикла. Иными словами, дифференциальная РГ дает информацию о скорости изменения кровенаполнения изучаемой области. Первую производную записывают одновременно с основной реографической кривой, обычно под ней (рис .14).

Графически первая производная представляет собой сочетание основного положительного зубца, состоящего из восходящей части, вершины и нисходящей части, основного отрицательного зубца, переходящего в горизонтальную линию, на которой в зависимости от состояния сосудистой стенки могут быть дополнительные положительные и отрицательные зубцы (рис.15).

Рис. 14. Формирование дифференциальной реограммы

Рис. 14. Формирование дифференциальной реограммы

Практически для правильного толкования отдельных элементов первой производной особенно важно предварительно определить изолинию. Для этого можно использовать отчетливые элементы кривой — точки, где скорость процесса равна нулю. Соединение этих точек позволяет получить достоверную изолинию.

Рис. 15. Положение опорных точек на дифференциальной реограмме абсолютный систолический максимум

Рис. 15. Положение опорных точек на дифференциальной реограмме абсолютный систолический максимум (1) первый условный минимум (2) условный максимум (3) второй условный минимум (4) второй условный максимум (5)

Основной положительный зубец первой производной является выражением падения сопротивления при притоке крови в изучаемый участок сосудистого русла. Проекция вершины основного положительного зубца первой производной на восходящую часть соответствующей реографической волны — это точка, где скорость раскрытия (наполнения) сосуда достигает максимума. В этой точке ускорение кровотока равно нулю. Положение максимума первой производной зависит от крутизны фронта подъема реографической волны. Как видно, вершина реографической волны и вершина первой производной не совпадают. После момента максимальной скорости раскрытия сосуда наполнение его продолжается, но скорость снижается. Этот процесс отражается на первой производной и соответствует нисходящей части основного положительного зубца. Вершина реографической волны — это точка, где скорость раскрытия равна нулю, что соответствует на первой производной точке пересечения нисходящей части основного положительного зубца с изолинией. В норме восходящие и нисходящие части основного положительного зубца равны и симметричны. Отрицательные волны первой производной позволяют уточнить расположение дополнительных волн на реограмме при их плохой выраженности, что необходимо, например, при определении дикротического и диастолического индексов. Глубина и местонахождение этих зубцов являются отражением тонического состояния сосудов.

Первая производная позволяет точно определить вершины и другие экстремальные точки реографической волны, что необходимо для соответствующих расчетов при анализе реографической кривой в тех случаях, когда эти точки трудно определить визуально: при внутричерепной гипертензии, выраженном атеросклерозе, значительном повышении тонуса, явлениях дистонии и пр. Для этого восстанавливается проекция основных точек первой производной на реографическую волну. Вершина дифференциальной РГ указывает на максимальную скорость наполнения сосудов, и перпендикуляр от нее соответствует на объемной реограмме окончанию периода быстрого наполнения, отражающего функциональное состояние крупных сосудов и сократительную способность сердца. Вслед за вершиной дифференциальной РГ следует резкое падение кривой в связи с быстрым уменьшением скорости наполнения в подфазу медленного изгнания крови. Перпендикуляр от точки, где кривая пересекает изоэлектрическую линию к вершине РГ соответствует окончанию периода медленного наполнения.

Соотношение восходящей и нисходящей частей основного зубца первой производной отражает тоническое состояние сосудистой стенки и изменяется при нарушениях сосудистого тонуса. При повышении тонуса укорачивается нисходящая часть и меняется ее конфигурация. Понижение тонуса сопровождается удлинением нисходящей части и соответствующим углублением основного отрицательного зубца.

По амплитуде первой производной РГ можно судить о величине угла наклона анакротической фазы. Чем больше амплитуда первой производной реограммы, т. е. чем больше крутизна анакротической фазы реограммы, тем больше скорость кровотока.

Качественная оценка реографической кривой

Анализ реографических кривых имеет два основных направления: качественный анализ, основанный на трактовке внешней формы реографической волны и ее отдельных частей и количественный анализ с использованием специальных цифровых расчетов.

Качественная оценка реографической волны включает описание периодичности появления волн, степени наклона восходящего колена и положения инцизуры и дополнительных волн. Визуальный анализ, несмотря на всю его несомненную субъективность, имеет большое значение при первичной оценке реограмм, особенно непосредственно в ходе исследования. Опытный специалист уже во время записи реографических кривых составляет о них первое и весьма важное мнение, так как форма реографических волн несет значительную информацию о состоянии сосудистой системы. Кроме того, что практически важно, определяя те или иные особенности реографических кривых в ходе исследования, можно оценить качество записи, выявить артефакты и своевременно принять меры к их устранению.

При визуальном анализе в реограмме выделяют крайние точки волны: начало, вершину и конец. В большинстве случаев эти точки легко определяются, однако при некоторых видах сосудистой патологии форма реографических волн настолько значительно и своеобразно изменяется, что нахождение этих точек становится затруднительным или даже невозможным. В этих случаях следует прибегать к синхронной записи электрокардиограммы и первой производной реограммы.

Под вершиной в норме понимается самая высокая точка реографической волны, но при некоторых формах патологии сосудов вершина может смещаться и не быть пиком кривой. В этих случаях также приходится прибегать к помощи первой производной реограммы. У здоровых молодых людей вершина реографической волны бывает острой или слегка закругленной. В норме восходящая часть волны более крутая, а нисходящая часть - пологая. На катакроте отмечается обычно инцизура, расположенная на границе верхней и средней трети нисходящей части и одна, реже две дополнительные волны.

В целом, уменьшение амплитуды реограммы свидетельствует об уменьшении кровенаполнения исследуемой области, а увеличение амплитуды - об увеличении кровенаполнения.

При различной сосудистой патологии изменяются конфигурация и угол наклона восходящей части или нисходящей или обеих частей реографической волны, форма и местонахождение вершины, выраженность и местонахождение дополнительных волн на нисходящей части и др.

Увеличение тонуса сосудов сопровождается уменьшением крутизны наклона анакроты и увеличением ее продолжительности, снижением амплитуды и смещением дикротического зубца к вершине, которая приобретает форму "плато". При резком повышении тонуса, на анакроте появляется дополнительный, так называемый ранний систолический зубец, в этом случае вершиной становится поздний систолический зубец, что в сочетании со смещением дикротического зубца к вершине приводит к формированию двугорбой формы кривой (рис. 16).

Рис. 16. Изменение реограммы при повышении тонуса сосудов

Рис. 16. Изменение реограммы при повышении тонуса сосудов

При понижении тонуса происходит обратное явление - вершина реоволны заостряется, увеличивается крутизна подъема анакротической фазы и уменьшается ее длительность. Дикротический зубец смещается к основанию кривой. Чем более выражена гипотония, тем ниже располагается дикротический зубец (рис. 17).

На восходящей (реже) и на нисходящей части реографической волны могут появляться новые дополнительные волны и элементы взаимоотношения частей волны могут резко меняться, в результате чего ее конфигурация изменяется весьма существенно по сравнению с нормой. Особенно значительные изменения происходят при патологии венозной системы: появляются так называемые венозные волны, происходят существенные сдвиги в строении нисходящей части и т. д.

Рис. 17. Изменение реограммы при выраженном снижении тонуса сосудов

Рис. 17. Изменение реограммы при выраженном снижении тонуса сосудов

Визуальный анализ реографических волн позволяет определить, в каких отделах сосудистой системы происходят наибольшие патологические изменения: преимущественно в артериальном или венозном, в системе крупных или мелких артерий. При определенной условности характера изменений реограмм, определяемых визуально, значение этого вида анализа весьма велико.

Количественный анализ реограммы

Наиболее достоверную и полную информацию о состоянии кровоснабжения можно получить, используя только расчетный метод обработки реограмм. При этом нивелируется субъективизм, присущий визуальному анализу. Цифровой анализ реографических кривых позволяет уточнить характер изменений, определяемых визуально, и выявить целый ряд других особенностей в состоянии сосудов изучаемой области.

1. Расчет показателей начинается с определения объемного пульсового кровенаполнения. Объемное пульсовое кровенаполнение, которое является интегральным показателем, отражающим суммарное кровенаполнение исследуемого участка биологического объекта в систолу, определяется по величине амплитудного показателя реограммы (АПР). АПР является важнейшим показателем, позволяющим определить относительную величину пульсового кровенаполнения в изучаемом участке сосудистого русла. Имеется четкая тенденция: чем больше величина пульсового кровенаполнения в каком-либо участке сосудистого русла, тем выше амплитуда реографических волн этого же отрезка сосудистой системы, а падение величины пульсового кровенаполнения, наоборот, приводит к уменьшению амплитуды реограмм. АПР является модификацией старого показателя - реографического индекса (РИ). Определяется АПР как отношение амплитуды систолической волны к калибровочному сигналу, умноженное на калибровочный эталон (0,1 Ом).

В практической работе при определении объемного пульсового кровенаполнения чаще используется реографический индекс (отношение амплитуды систолической волны в мм к величине калибровочного импульса в мм), который выражается в условных единицах. Но, по мнению многих авторов, РИ не является объективным показателем, так как недосчитан на целое звено формулы (недостает калибровочного эталона - 0,1 Ом). Учитывая этот факт, целесообразно применять амплитудный показатель реограммы, который выражается в Омах.

Амплитудой реографической волны называется максимальное расстояние от ее основания до вершины. Если реограмма нормальная или вершина четко выявляется, определение амплитуды несложно. При некоторых патологических состояниях форма реографических волн изменяется таким образом, что вершина волны определяется с трудом или не соответствует пику (максимальному возвышению) волны. В этих случаях для достоверного определения вершины и, следовательно, амплитуды реографической волны следует прибегать к синхронной записи реограмм и их первых производных.

Средняя величина АПР для взрослых здоровых людей равен в среднем 0,15 Ом в отведении F-М и 0,11 Ом в отведении О-М. Для периферической реографии амплитудный показатель реограммы в среднем равен: для предплечья - 0,12 Ом, для кисти - 0,14 Ом, для голени - 0,13 Ом и для стопы - 0,15 Ом.

Полученные данные, в первую очередь, сопоставляют с данными исследования симметричного участка, с прежними результатами. И только потом - с условными нормами, ввиду большого разброса величин, получаемых в различных условиях.

В зависимости от величины АПР объемное пульсовое кровенаполнение может быть в пределах нормы, сниженным или повышенным. Снижение объемного пульсового кровенаполнения подразделяется на несколько степеней: умеренное, если АПР меньше нормы не более, чем на 40%; значительное, если АПР меньше нормы на 40-60%; резко выраженное, если АПР меньше нормы на 60-90% и критическое, когда амплитуда реограммы граничит с техническими возможностями реографа.

2. Время восходящей части реографической волны альфа — важнейший и наиболее стабильный показатель реограммы, отражающий период полного раскрытия сосуда и дающий четкую информацию о состоянии сосудистой стенки. Определяется от начала реографической волны до истинной вершины. Чем податливее, эластичнее сосудистая стенка, тем быстрее раскрывается она под действием притекающей в данный участок сосудистой системы крови. У взрослых здоровых людей время восходящей части волны равняется 0,1 ± 0,01 с.

Показатель альфа четко зависит от возраста. У детей с более эластичной и податливой сосудистой стенкой этот показатель меньше. У пожилых людей, у которых сосудистая стенка становится более ригидной и требуется больше времени на полное раскрытие сосуда, этот показатель возрастает.

Время восходящей части волны можно подразделить на две составляющие: а) время быстрого кровенаполнения (альфа 1); б) время медленного кровенаполнения (альфа 2). Для достоверного определения этих показателей следует использовать первую производную: пик первой производной делит время восходящей части на эти два периода (рис. 18).

Время быстрого кровенаполнения - показатель, зависящий непосредственно от сердечной деятельности; его продолжительность обусловливается ударным объемом сердца и прямо зависит от модуля упругости стенок больших сосудов исследуемого участка. Продолжительность периода быстрого наполнения позволяет определить тонус крупных артерий (артерий распределения).

Рис. 18. Схема определения длительности основных составляющих РГ

Рис. 18. Схема определения длительности основных составляющих РГ

Время медленного кровенаполнения в значительно меньшей степени зависит от сердечных факторов; его величина в большей мере обусловлена тоническими свойствами сосудистой стенки. Продолжительность периода медленного наполнения используют для оценки тонуса артерий среднего и мелкого калибра (артерий сопротивления). В норме альфа 1 и альфа 2 приблизительно равны между собой. При повышении тонуса и снижении эластичности сосудистой стенки происходит изменение этого соотношения в сторону увеличения времени медленного кровенаполнения.

3. Время нисходящей части волны (бетта) - от вершины волны до точки пересечения кривой с изолинией. Определение бетта до этой точки более обосновано, чем до начала следующей волны, так как позволяет более точно определить состояние венозного оттока. Этот показатель, ранее широко применявшийся при анализе реограмм, не имеет самостоятельного значения, так как его величина зависит в первую очередь от частоты сердечных сокращений, меняющихся в процессе обследования (следует подчеркнуть, что время восходящей части достаточно стабильно и не зависит от частоты сердечных сокращений).

4. Географический коэффициент (РК) - отношение длительности восходящей части волны к длительности всего кардиоцикла, выраженное в процентах.

РК = альфа / Т , где Т - период реоволны

Этот показатель дает дополнительные сведения о тонусе сосудистой стенки, особенно при наблюдении за больными в динамике. При повышении тонического напряжения сосудов этот показатель увеличивается (в результате возрастания альфа и наоборот. В норме это показатель составляет около 15%.

5. Время распространения (запаздывания) реографической волны - время от зубца Q синхронно записанной ЭКГ до начала очередной реографической волны (рис. 19). 

Рис. 19. Определение времени распространения реографической волны

Скорость распространения пульсовой волны относится к одному из наиболее достоверных показателей эластичности сосудистой стенки, ее тонического состояния (модуля упругости) на отрезке от сердца до исследуемого участка. При реографическом исследовании этот показатель косвенно отражается в длительности интервала Q-а. В норме для сосудов головы (отведение F-М) этот показатель равен 0,18-0,19 с, для сосудов конечностей - 0,24-0,32 с.

При повышении сосудистого тонуса время распространения волны уменьшается, иногда существенно - до 0,1 с, а при понижении тонуса - несколько увеличивается.

6. Дикротический индекс (ДКИ) — отношение величины амплитуды реографической волны на уровне инцизуры к максимальной амплитуде (рис .20). ДКИ выражается в процентах и отражает преимущественно тонус артерий среднего и мелкого калибра (артерий сопротивления). Его значение в норме колеблется от 40 до 70 % и зависит от состояния периферического сосудистого сопротивления.

Рис. 20. Схема определения дикротического

Рис. 20. Схема определения дикротического, дастолического индексов и амплитуды преанакротической волны

7. Диастолический индекс (ДСИ) — отношение величины амплитуды на уровне дикротического зубца к максимальной амплитуде реографической волны (рис. 20). ДСИ определяется в процентах и равняется приблизительно 50- 60%. В литературе встречаются и другое его названия - межамплитудный коэффициент.

8. Амплитуда преанакротической волны (aQa). Позволяет судить о тонусе вен. В норме не превышает 0,11. Амплитуда пренакротической волны менее 0,11 свидетельствует о сохраненном венозном тонусе, увеличение aQa более 0,11 - снижение тонуса вен (рис.20).

9. Оценка коэффициента асимметрии (КА). Это очень важный показатель, по которому можно определить разницу кровенаполнения между симметричными областями.

Коэффициент асимметрии вычисляется по формуле:

КА=Аб-Ам/ Ам х 100%,

где Аб — амплитуда реограммы на стороне, где АПР больше; Ам — амплитуда реограммы на стороне, где АПР меньше.

Нормативными являются значения КА от 5 до 20%.

10. Скорость быстрого наполнения (Уб, Ом/с)—отношение величины амплитуды быстрого наполнения (в омах) к продолжительности этого периода (в секундах) — характеризует наполнение крупных артериальных сосудов, тонус магистральных артерий (артерий распределения). Тонус артерий распределения принято определять по продолжительности периода быстрого наполнения. Однако целесообразнее использовать скоростные показатели, а именно величину скорости периода быстрого наполнения, которая определяется по дифференциальной реограмме. Данный показатель более точно определяет состояние магистральных сосудов и способен отреагировать в том случае, когда величина альфа 1 находится еще в пределах нормы.

В зависимости от величины Уб различают следующие состояния тонуса артерий распределения: в пределах нормы; повышен, если Уб ниже нормы; понижен, если Уб выше нормы. Если Уб находится на нижней границе нормы, то отмечают наличие тенденции к повышению тонуса артерий распределения; если Уб на верхней границе нормы то имеется тенденция к снижению тонуса. При снижении Уб более 50% от нормы констатируется гипертонус, а при повышении Уб более 50% - гипотонус.

11. Скорость медленного кровенаполнения (Ум, Ом/с)—отношение величины амплитуды медленного наполнения (в омах) к продолжительности этого периода (в секундах)—характеризует наполнение средних и мелких артериальных стволов, тонус артерий среднего и мелкого калибра (артерий сопротивления). Тонус артерий сопротивления классически определяется индексным методом. Для этих целей используется дикротический индекс, который является очень показательным параметром, но находится в большой зависимости от состояния венозного оттока. Кроме того, можно использовать и продолжительность периода медленного наполнения (а2). Наиболее точно о состоянии артерий сопротивления можно судить по величине скорости периода медленного наполнения, которая определяется также с помощью дифференциальной реограммы. В зависимости от величины Ум оценку его производят по алгоритму определения тонуса артерий распределения.

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Лекция для врачей. Часть 2. "УЗИ или РЭГ. Аспекты применения реоэнцефалографии для оценки мозгового кровообращения"

Содержание

РЭГ исследование сосудов головного мозга. Часть 1

Анализ реографической (РЭГ) кривой. Часть 3

Методика проведения реоэнцефалографии (РЭГ). Исследование мозгового кровотока. Часть 4

Изменение РЭГ при артериальной гипертензии. Часть 5

Сосудистая дистония. РЭГ исследование сосудов головного мозга. Часть 6

Изменение РЭГ при атеросклерозе. РЭГ исследование сосудов головного мозга. Часть 7

Изменение венозного кровоснабжения мозга и внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 8

Внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 9

Нарушения мозгового кровообращения. РЭГ исследование сосудов головного мозга. Часть 10

Изменения РЭГ при нарушении проходимости артерий головного мозга. РЭГ исследование сосудов головного мозга. Часть 11

Закрытая черепно-мозговая травма. РЭГ исследование сосудов головного мозга. Часть 12

Функциональные пробы в РЭГ. РЭГ исследование сосудов головного мозга. Часть 13

Артефакты при регистрации реограмм. РЭГ исследование сосудов головного мозга. Часть 14

Патологии. РЭГ исследование сосудов головного мозга. Часть 15

Реография является неинвазивным методом исследования системного и регионарного кровообращения, который основан на регистрации изменений сопротивления (импеданса) биологического объекта при его сканировании переменным током высокой частоты. Термин «реоэнцефалография» (РЭГ) предложен Дженкнером в 1957 г. В последнее время наблюдается тенденция к вытеснению РЭГ ультразвуковой допплерографией (УЗДГ). Но игнорирование реографического метода является преждевременным и необоснованным. Прежде всего, учёными подвергается сомнению генез реографической кривой, получаемой при проведении РЭГ-исследования. В качестве доказательства несостоятельности реографического метода его противники традиционно пытаются обосновать экстракраниальный генез РЭГ-кривой. По их мнению, изменения импеданса обусловлены влиянием внемозгового кровотока. Основной аргумент при этом сводится к большому сопротивлению костей черепа, препятствующему прохождению зондирующего тока. А. А. Кедров, обсуждая возможность применения импедансного метода в оценке мозгового кровообращения, пишет: «... с наружно расположенных электродов внутричерепной кровоток не регистрируется, и реограммы отражают только кровообращение в околочерепных сосудах». Однако, еще в 1961 г. Кунерт пришёл к выводу, что кость не является существенным препятствием для прохождения зондирующего тока, поскольку обладает в основном ёмкостным сопротивлением. Импеданс обескровленной и неживой кости достигает 4000 Ом-см, но величина импеданса в живом черепе намного меньше - около 200 Ом-см, так как сопротивление костей варьируется в зависимости от количества крови и форменных элементов. Следовательно, кости черепа не препятствуют прохождению зондирующего тока в полость черепа и отражению на РЭГ колебаний интракраниального импеданса.

Для проведения реографического исследования необходимо использовать реограф - прибор, работающий по принципу генератора тока высокой частоты. Оптимальной частотой зондирующего тока при проведении РЭГ-исследования является 50.100 кГц - именно при таких значениях сводится к минимуму эффект поляризации, возникающий на границе электродткань, что даёт возможность просканировать биологический объект более глубинно. При проведении РЭГ- исследования производится сканирование двух основных бассейнов: внутренней сонной артерии (FM-отведение) и вер- тебро-базиллярного бассейна (ОМ-отведение). Это основные отведения. Кроме основных существуют и дополнительные отведения, которые позволяют избирательно судить о состоянии бассейнов передней мозговой артерии (ПМА), средней мозговой артерии (СМА) и задней мозговой артерии (ЗМА), а также о состоянии экстракраниального кровотока в общей сонной артерии (ОСА) и позвоночных артериях (ПА).

В чём заключается преимущество РЭГ перед активно развивающимся методом УЗДГ? При проведении УЗДГ не возникает никаких трудностей во время исследования экстракраниального кровотока. Ультразвук беспрепятственно проникает через мягкие ткани, что дает возможность чёткой визуализации сосуда. Особенно ценную информацию можно получить при исследовании комплекса интима-медиа, когда удаётся достаточно чётко визуализировать атеросклеротические бляшки. При наличии соответствующей программы удаётся установить степень редукции просвета сосуда. Что же касается исследования внутричерепной гемодинамики, то тут возникает ряд методических проблем. Прежде всего, по своей физической природе ультразвук обладает способностью отражаться от поверхности с большой плотностью. Учитывая этот факт и анатомические особенности черепа, были выбраны так называемые «окна визуализации»: височные (для изучения кровотока в ПМА, СМА и ЗМА) и подзатылочная ямка (для исследования вертебро-базиллярного бассейна). Кроме того, при проведении транскраниальной УЗДГ (ТКУЗДГ) может возникнуть ещё одна методическая трудность, связанная с утолщением кости в области «окон визуализации», в результате чего возникают существенные трудности при оценке кровотока в исследуемом сосуде.

Таким образом, у импедансного и ультразвукового методов есть один общий барьер - кости черепа. Однако, что касается РЭГ, то как уже было показано, в живом организме кость не является значимым препятствием зондирующему току. Немаловажен и тот факт, что РЭГ является абсолютно безопасным для пациента, так как не возникает механического сотрясения на клеточном и субклеточном уровнях, что может наблюдаться при ТКУЗДГ. Существует ещё один факт, выгодно отличающий РЭГ от ТКУЗДГ, который отмечает Л.Б. Иванов: «Допплерография характеризует кровоток на уровне конкретного участка магистрали исследуемой артерии и ему неведомо, что творится на уровне концевых разветвлений этого сосуда». РЭГ позволяет исследовать весь бассейн того или иного сосуда, включая магистральные артерии и микро циркуляторное русло, а также косвенно судить о состоянии венозной гемодинамики.

Следовательно, по данным реографического метода можно косвенно судить и о состоянии венозного оттока из исследуемой области. Наиболее достоверную и полную информацию о состоянии кровоснабжения мозга можно получить, используя только расчётный метод обработки реограмм, например отношение амплитуды РЭГ к общему сопротивлению под электродами этого отведения отражает объём пульсовой волны (показатель относительного объёмного пульса), отношение длительности восходящей части к длительности всей волны является показателем сосудистого тонуса. Вычисляются также и другие характеристики РЭГ, связанные с процессом кровообращения. При этом нивелируется субъективизм, присущий визуальному анализу.

Информационная направленность реоэнцефалографии

Пульсовые изменения импеданса между электродами, наложенными на кожные покровы головы человека, при соблюдении необходимых условий отражают с определённой погрешностью колебания кровенаполнения полости черепа, а их динамика в короткие промежутки времени - функциональные сдвиги в системе внутричерепной гемоциркуляции. Поэтому для выяснения информативной направленности реоэнцефалографии (РЭГ) следует рассмотреть взаимосвязь между пульсовыми измерениями кровенаполнения области черепа и другими показателями деятельности системы внутричерепной гемодинамики.

Эта система обладает сложной биофизической структурой, функциональные связи которой представлены на рис. 1.2.

Как следует из этой схемы, кровенаполнение полости черепа является производной величиной, зависящей при стабильности показателей системной гемодинамики от тонуса артерий и вен головного мозга и от состояния ликвородинамики.

Рост или падение мозгового кровотока может в зависимости от вызывающих их причин сопровождаться как однонаправленными, так и разнонаправленными изменениями кровенаполнения полости черепа. Качественная направленность изменений данного показателя и мозгового не всегда совпадает. Так, изменения локального мозгового кровотока и импеданса ткани мозга при ряде тестов и поведенческих реакций могут быть разнонаправленными. Вместе с тем нельзя отрицать, что при определённых условиях исследования можно наблюдать положительную корреляцию между некоторыми показателями РЭГ-волны и изменениями мозгового кровотока. Найдена хорошая корреляция между установившимися значениями локального кровотока и импеданса в этой же зоне мозга при внутричерепной артериальной гиперемии. Но такая корреляция может наблюдаться лишь при строго определённых сочетаниях показателей, входящих в схему (рис. 1.2).

Рис. 1.2. Схема функциональных взаимосвязей между элементами системы внутричерепной гемоликвородинамики

Рис. 1.2. Схема функциональных взаимосвязей между элементами системы внутричерепной гемоликвородинамики: (+) – положительная связь; (–) – отрицательная связь

Таким образом, информационная направленность РЭГ ограничивается в основном возможностью комплексного отражения особенностей растяжимости сосудов артериального и венозного отделов сосудистой системы головного мозга и состояния системы ликвородинамики. Имеются многочисленные данные, показывающие чёткую зависимость показателей РЭГ от возрастных изменений свойств мозговых сосудов, степени их склерозирования, состояния их тонуса при гипертонической болезни и т.п. В последнее время успешно развивается идея о двухкомпонентности генеза РЭГ - влиянии относительного кровенаполнения как церебральных артерий, так и вен, и на основании этого предлагается способ автоматической обработки РЭГ. Однако до сих пор мало уделяется внимания роли третьего компонента - ликвородинамике, который согласно рис. 1.2 тесно связан с кровенаполнением полости черепа.

Для уточнения информативной целенаправленности РЭГ следует найти пути для трёх видов возможных влияний на показатели РЭГ, а именно изменений тонуса церебральных сосудов, их кровенаполнения и изменений в системе ликвородинамики.

Один из возможных путей дифференцирования влияния каждого из упомянутых трех видов влияний на показатели РЭГ заключается в использовании направленных функциональных нагрузок с тем, чтобы, сопоставляя ответы на них при разных состояниях организма, судить об изменении того или иного из интересующих показателей. Кроме функциональных нагрузок физической природы, информативным является использование фармакологических препаратов. Особенно часто применяются нитроглицериновая проба, а также проба с вдыханием СО2 .

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Лекция для врачей "РЭГ исследование сосудов головного мозга". Часть 1

Содержание 

УЗИ или РЭГ. Аспекты применения реоэнцефалографии для оценки мозгового кровообращения. Часть 2

Анализ реографической (РЭГ) кривой. Часть 3

Методика проведения реоэнцефалографии (РЭГ). Исследование мозгового кровотока. Часть 4

Изменение РЭГ при артериальной гипертензии. Часть 5

Сосудистая дистония. РЭГ исследование сосудов головного мозга. Часть 6

Изменение РЭГ при атеросклерозе. РЭГ исследование сосудов головного мозга. Часть 7

Изменение венозного кровоснабжения мозга и внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 8

Внутричерепная гипертензия. РЭГ исследование сосудов головного мозга. Часть 9

Нарушения мозгового кровообращения. РЭГ исследование сосудов головного мозга. Часть 10

Изменения РЭГ при нарушении проходимости артерий головного мозга. РЭГ исследование сосудов головного мозга. Часть 11

Закрытая черепно-мозговая травма. РЭГ исследование сосудов головного мозга. Часть 12

Функциональные пробы в РЭГ. РЭГ исследование сосудов головного мозга. Часть 13

Артефакты при регистрации реограмм. РЭГ исследование сосудов головного мозга. Часть 14

Патологии. РЭГ исследование сосудов головного мозга. Часть 15

Реографические методы (РЭГ)

Реографические методы практически не имеют противопоказаний и пригодны для продолжительных исследований, в том числе мониторирования. Метод позволяет проводить длительное наблюдение за больными при изучении действия различных фармакологических средств и оценивать компенсаторные возможности. Применение многоканальных реографов (полиреография) позволяет изучать перераспределение крови и синхронно оценивать состояние кровообращения в различных органах под влиянием лечения и при функциональных нагрузках. 

Это бескровный метод оценки динамических характеристик кровообращения, основанный на графической регистрации изменения электрического сопротивления живых тканей во время прохождения через них переменного тока высокой частоты и отражающий изменения пульсового кровенаполнения исследуемой области тела в течение сердечного цикла, функциональное состояние сосудов, их тонус.

Особенности кровообращения в головном мозгу

Кровообращение головного мозга характеризуется специфическими особенностями, обусловленными его сложной структурной и функциональной организацией. Объём крови, протекающей через головной мозг человека, составляет, как правило, значительную часть (у взрослых примерно 15 %) общего объёма крови. Из общего количества кислорода, поступающего в организм с вдыхаемым воздухом, головной мозг потребляет 20 - 25%.

Кроме массы циркулирующей крови важным фактором, определяющим интенсивность кровоснабжения головного мозга, является скорость кровотока. Известно, что скорость артериального кровотока в мозгу значительно больше, чем в других органах. Такое интенсивное кровоснабжение обеспечивается большой и сложной сетью мозговых сосудов с разнообразной ангиоархитектоникой.

Кровоснабжение мозга осуществляется двумя парами магистральных артерий - внутренними сонными и позвоночными, образующими на основании мозга виллизиев круг. Виллизиев круг является мощным коллектором, обеспечивающим распределение крови в головном мозгу. Вследствие равенства давления в правых и левых, а также в передних и задних половинах виллизиева круга в определённых местах передней и задних соединительных артерий образуются «мёртвые пункты», в которых движения крови нет. 

Следовательно, кровь из разных сосудов в пределах виллизиева круга в физиологических условиях не смешивается, а попадает в зону васкуляризации каждой отдельной артерии.

Задняя мозговая циркуляция поддерживается кровотоком из позвоночных артерий, причем после их слияния в основную артерию кровь из правой позвоночной артерии течёт строго по правой половине, а из левой позвоночной - по её левой половине. Возможно, равномерному распределению крови по гомолатеральным сторонам способствуют и сосудистые пучки, отходящие от дорсальных сторон позвоночных артерий у места их слияния.

Однако даже при незначительном уменьшении давления в каком-нибудь из магистральных сосудов (прижатие артерий на шее при резких движениях головы или при сдавлении шеи) сейчас же происходит переток крови в направлении снизившегося давления. Из сказанного видно, что динамика кровоснабжения мозга даже в физиологических условиях зависит от состояния коллатерального кровообращения. Виллизиев круг является наиболее мощной и постоянно действующей системой анастомозов, обеспечивающей коллатеральное кровообращение в обоих полушариях. Кроме того, существуют ещё две системы анастомотических связей, не функционирующие в нормальных условиях, но приобретающие важное значение в условиях сосудистой патологии. Это связи внутренней сонной и позвоночной артерий с наружной сонной артерией и анастомозы трёх мозговых артерий между собой на поверхности мозга.

Общая масса внутричерепного содержимого (мозговое вещество, артериальная кровь, венозная кровь и ликвор) относительно постоянна. Приток артериальной крови - важный фактор для поддержания внутричерепного давления. Изменение кровенаполнения мозга сказывается на давлении ликвора. Гемодинамика в головном мозгу поддерживается пульсовыми движениями крови. Ритмические колебания объёма мозговых сосудов (пульсация мозга) связаны с активным сужением и расширением сосудов и перемещением ликвора, а также находятся в зависимости от ряда влияний, в частности от сокращений сердца и дыхания (присасывающего действия грудной клетки, способствующего венозному оттоку от мозга).

Отток крови из полости черепа осуществляется по развитой венозной системе (вены, синусы, венозные выпускники), открыто сообщающейся с внечерепными венами. Анатомическое и функциональное единство мозговых вен с внечерепными венами и отсутствие в них клапанов обеспечивают возможность кровотока в разных направлениях - в зависимости от местных условий и потребностей тканей в притоке и оттоке крови. Используя эти особенности венозного кровообращения головы, А.А. Кедров и А.И. Науменко (1954 г.) при изучении церебральной гемодинамики собак получили экспериментальные данные, подтверждающие пульсовый характер движения крови в сосудах мозга в закрытом черепе. Постоянные пульсовые и дыхательные колебания внутричерепного давления в закрытом черепе, согласно их данным, возможны благодаря наличию своеобразных приспособительных механизмов: с одной стороны, существованию пульсового венозного оттока из полости черепа и, с другой, - благодаря перемещению ликвора из полости черепа в спинномозговую полость в связи с разными фазами дыхания. Это позже подтвердилось в исследованиях Ю.Е. Москаленко и А.И. Науменко (1957 г.). Они определили не только характер этих колебаний (пульсовых волн, дыхательных и волн третьего порядка), но и их абсолютные величины. В замкнутой полости черепа объём мозга колеблется незначительно благодаря тому, что он окружён со всех сторон несжимаемым ликвором и при пульсовых колебаниях давление крови встречает со всех сторон противодавление.

Церебральная гемодинамика, таким образом, отличается от кровоснабжения других органов не только большей интенсивностью и постоянством, но и особенностями коллатерального кровообращения, а также тесной взаимосвязью с ликворообращением. Последняя проявляется в большой взаимозависимости между венозным и ликворным давлением. При венозном застое мозга развивается ликворная гипертензия.

Наряду с существованием взаимосвязи между циркуляцией крови и ликвора имеется тесная взаимозависимость между состоянием регионарного кровотока и функциональной активностью различных образований мозга. Усиление кровообращения в одних структурных образованиях мозга при их усиленной деятельности сопровождается уменьшением кровоснабжения других, находящихся в это время в состоянии относительного покоя.

Благодаря богатому интракраниальному коллатеральному кровотоку - как артериальному, так и венозному - в обоих полушариях нет области, которая обеспечивалась бы исключительно одной магистральной артерией или одной магистральной веной. Это, наряду с перераспределением крови в мозгу в зависимости от функциональной активности различных его образований, предопределяет целесообразность изучения регионарной гемодинамики мозга одновременно в нескольких его областях.

Механизмы формирования реоэнцефалограммы (РЭГ)

Изменения импеданса между электродами, накладываемыми на кожные покровы головы, определяются сложным комплексом факторов, которые представлены на рис. 1.1.

Ведущими факторами, или возмущающими воздействиями, являются колебания системного венозного и артериального давления, а остальные играют модулирующую роль. Последние следует разделить на три группы. Первая - это факторы внутричерепной гемодинамики, определяющие информативность реоэнцефалограммы (РЭГ). Вторая группа - факторы, не связанные с внутричерепной гемодинамикой, т.е. факторы, являющиеся источником помех и снижающие информационную ценность РЭГ. Поэтому следует выяснить условия, при которых влияние внутричерепных факторов будет наиболее выражено, а влияние помехонесущих факторов - минимальным.

Исходя из схемы на рис. 1.1 очевидно, что внутричерепные гемодинамические и ликвородинамические факторы могут иметь выраженное модулирующее влияние на РЭГ. Действительно, пульсовые изменения пассивных электрических свойств внутричерепного содержимого определяются приростом кровенаполнения полости черепа за счёт пульсовых колебаний в артериальной и венозной системах головного мозга. В связи с особенностью биофизической структуры системы внутричерепной гемодинамики способность сосудов мозга вместить дополнительный объём крови по сравнению с другими органами весьма ограничена. В механизмах компенсации систолического объёма крови особое значение приобретают такие факторы, как колебания внутричерепного давления, ускорение тока крови, передача артериальной пульсации на вены непосредственно через ликвор, перераспределение внутричерепного объёма между артериальной, венозной кровью и ликвором. Электропроводность ликвора отличается от электропроводности крови, а последняя неодинакова в различных участках сосудистой системы мозга. Таким образом, пульсовая волна РЭГ представляет собой комплексный биофизический сигнал сложной природы, основная информационная ценность которого заключается в возможности судить о пульсовых изменениях кровенаполнения мозговой ткани, что в свою очередь зависит от растяжимости стенок церебральных сосудов. Следовательно, РЭГ может отражать как структурные изменения стенок мозговых сосудов, например при атеросклерозе, так и динамические изменения их тонуса в ответ на функциональные нагрузки. Последнее может представить интерес как неинвазивный методический подход для оценки адаптационных способностей сосудистой системы головного мозга при тех или иных внешних воздействиях на организм или патологических состояниях.

Рис. 1.1. Схема формирования РЭГ-волны

Рис. 1.1. Схема формирования РЭГ-волны

Влияние внечерепных гемодинамических факторов. Вопрос о соотношении вне- и внутричерепных факторов является наиболее спорным в физиологическом и биофизическом обосновании метода РЭГ. Как следует из рис. 1, внечерепные сосуды находятся под влиянием тех же гемодинамических факторов, что и внутричерепные. При этом их реакции на такие воздействия, как изменение парциального давления углекислого газа артериальной крови, колебания артериального давления, симпатическая стимуляция и некоторые другие воздействия, могут быть неодинаковыми и даже разнонаправленными. Изучение относительной роли вне- и внутричерепных сосудов в генезе РЭГ проводится путём биофизического анализа и путём экспериментального физиологического исследования.

Биофизический анализ токораспределения по вне- и внутричерепным тканям при наложении электродов на кожные покровы головы показал, что полностью избежать шунтирования тока по экстракраниальным тканям не удаётся. Вследствие высокого сопротивления костей черепа наилучшие условия для прохождения тока в мозг создаются при наложении электродов вблизи больших естественных отверстий черепа (глазниц и затылочного отверстия).

Точная величина экстракраниального компонента РЭГ сигнала в настоящее время неизвестна, но всё же значительна. Поэтому для РЭГ метода, как и для всех других методов исследования мозгового кровообращения, проблема уменьшения этого компонента остаётся весьма актуальной. Стандартизация техники регистрации РЭГ позволит фиксировать рассматриваемые погрешности и сделать результаты исследований сопоставимыми. К специальным способам снижения влияния внечерепных факторов при регистрации РЭГ относится одновременное снятие РЭГ и реограммы мягких тканей головы с последующим электронным сопоставлением их и получением результирующей кривой, а также применение защитных кольцевых или экранирующих электродов.

Таким образом, несмотря на существенное модулирующее влияние колебаний кровенаполнения внечерепных тканей, РЭГ может сохранить свою информационную ценность, если данный фактор будет должным образом учитываться.

Влияние изменений электрических свойств тканей на показания РЭГ. Согласно рис. 1, пульсовые волны РЭГ, особенно их амплитуды, должны зависеть от изменения соотношения между пассивными электрическими характеристиками сред и тканей, заполняющих полость черепа. Известно, что электрическое сопротивление крови зависит от самых разных факторов. Заполняющая полость черепа кровь, ликвор, межклеточная жидкость являются основными путями проведения электрического тока, поэтому как базовое сопротивление между электродами, так и его относительные изменения будут в первую очередь определяться соотношением жидкостной и клеточной фаз в исследуемой области. Об этом говорит значительное возрастание амплитуды пульсовых колебаний сопротивления между электродами.

Определённое значение для РЭГ имеют изменения электропроводности крови при её движении. Биофизический анализ этого феномена в системе жёстких трубок показал, что изменение электропроводности крови определяется зарядом на поверхности эритроцитов и степенью их агрегации. Поскольку величина изменения электропроводности крови при движении зависит от частоты измерительного тока, то диапазон частот, рекомендованный для регистрации РЭГ, выбран с учётом данного феномена и погрешность за счёт скоростных изменений кровотока составляет не более 8...10 %. Исследования показали, что объёмный компонент реографического сигнала во много раз превосходит скоростной компонент. Поэтому можно сказать, что пульсовая волна РЭГ отражает объёмные изменения кровенаполнения исследуемого участка мозга.

Все вышеизложенное указывает на то, что динамика показателей РЭГ определяется не только процессами в системе внутричерепной гемоциркуляции, но и изменениями электрических характеристик крови и ткани мозга, поэтому не следует использовать данный метод при таких воздействиях на организм, которые оказывают существенное влияние на электрические характеристики крови и ткани мозга. Учёт изложенных выше фактов позволит повысить информационную ценность данной методики.

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Сосуды головы и шеи. Анатомия. Видеоатлас доктора Роберта Акланда. Часть 1, 2.

Сосуды головы и шеи. Часть 1. Автор лекции профессор В. А. Изранов

Сосуды головы и шеи. Часть 2. Автор лекции профессор В. А. Изранов

АРТЕРИИ ГОЛОВЫ И ШЕИ

Артерии головы и шеи представлены системами левых и правых общих сонных и подключичных артерий (рис. 177). Правые общая сонная и подключичная артерии обычно отходят от плечеголовного ствола, а левые - самостоятельно от выпуклой части дуги аорты.

Плечеголовной ствол (truncus brahiocephalicus) - непарный, крупный, сравнительно короткий сосуд. Отходит от дуги аорты вверх и вправо, спереди пересекает трахею. Позади рукоятки грудины и начала грудино-подъязычной и грудино-щитовидной мышц, а также левой плечеголовной вены и вилочковой железы он разделяется на правую подключичную и правую общую сонную артерии (рис. 178). Иногда от него ответвляется низшая щитовидная артерия (a. thyroidea ima).
Подключичная артерия (a. subclavia), парная; правая берет начало от плечеголовного ствола, левая - непосредственно от дуги аорты. Отдает артерии к голове, шее, плечевому поясу и верхней конечности. Начальная часть артерии огибает верхушку легкого, далее артерия выходит на шею. На шее различают 3 отдела подключичной артерии: первый - до входа в межлестничное пространство, второй - в межлестничном пространстве и третий - кнаружи от указанного пространства до наружного края I ребра, где подключичная артерия переходит в подмышечную (см. рис. 178). В каждом из них артерия отдает ветви.

Ветви первого отдела (рис. 179): 

1. Позвоночная артерия (a. vertebralis) отходит от верхней полуокружности артерии и следует вверх, позади общей сонной артерии до отверстия поперечного отростка VI шейного позвонка. Далее артерия проходит до II шейного позвонка в костно-фиброзном канале, образованном отверстиями поперечных отростков и связками. По выходе из канала она прободает заднюю атлантозатылочную мембрану, проходит через большое отверстие в полость черепа и на скате затылочной кости соединяется с одноименной артерией другой стороны, образуя непарную базилярную артерию (a. basilaris) (рис. 180). Ветви позвоночных и базилярной артерий кровоснабжают ствол головного мозга, мозжечок и затылочную долю полушарий конечного мозга. В клинической практике они получили название «вертебробазилярная система» (рис. 181). Ветви позвоночной артерии:

1) спинномозговые (rr. spinalies) - к спинному мозгу;

2) мышечные (rr. musculares) - к предпозвоночным мышцам;

3) менингеальные (rr. meningeales) - к твердой оболочке головного мозга;

4) передняя спинномозговая артерия (a. spinalis anterior) - к спинному мозгу;

5) задняя нижняя мозжечковая артерия (a. inferior posterior cerebelli) - к мозжечку.

Рис. 177. Общий вид артерий головы и шеи, вид справа (схема)


Рис. 177. Общий вид артерий головы и шеи, вид справа (схема):

1 - теменная ветвь средней менингеальной артерии; 2 - лобная ветвь средней менингеальной артерии; 3 - скулоглазничная артерия; 4 - надглазничная артерия; 5 - глазная артерия; 6 - надблоковая артерия; 7 - артерия спинки носа; 8 - клиновидно-нёбная артерия; 9 - угловая артерия; 10 - подглазничная артерия; 11 - задняя верхняя альвеолярная артерия; 12 - щёчная артерия; 13 - передние верхние альвеолярные артерии; 14 - верхняя губная артерия; 15 - крыловидные ветви; 16 - дорсальные ветви язычной артерии; 17 - глубокая артерия языка; 18 - нижняя губная артерия; 19 - подбородочная артерия; 20 - нижняя альвеолярная артерия; 21 - подъязычная артерия; 22 - подподбородочная артерия; 23 - восходящая нёбная артерия; 24 - лицевая артерия; 25 - наружная сонная артерия; 26 - язычная артерия; 27 - подъязычная кость; 28 - надподъязычная ветвь язычной артерии; 29 - подподъязычная ветвь язычной артерии; 30 - верхняя гортанная артерия; 31 - верхняя щитовидная артерия; 32 - грудино-ключично-сосцевидная ветвь верхней щитовидной артерии; 33 - щитоподъязычная мышца; 34 - общая сонная артерия; 35 - нижняя щитовидная артерия; 36 - низшая щитовидная артерия; 37 - щитошейный ствол; 38 - подключичная артерия; 39 - плечеголовной ствол; 40 - внутренняя грудная артерия; 41 - дуга аорты; 42 - реберно-шейный ствол; 43 - надлопаточная артерия; 44 - поперечная артерия шеи; 45 - глубокая шейная артерия; 46 - дорсальная артерия лопатки; 47 - поверхностная шейная артерия; 48 - позвоночная артерия; 49 - восходящая шейная артерия; 50 - спинномозговые ветви позвоночной артерии; 51 - бифуркация сонной артерии; 52 - внутренняя сонная артерия; 53 - восходящая глоточная артерия; 54 - глоточные ветви восходящей глоточной артерии; 55 - сосцевидная ветвь задней ушной артерии; 56 - шилососцевидная артерия; 57 - затылочная артерия; 58 - верхнечелюстная артерия; 59 - поперечная артерия лица; 60 - затылочная ветвь задней ушной артерии; 61 - задняя ушная артерия; 62 - передняя барабанная артерия; 63 - жевательная артерия; 64 - поверхностная височная артерия; 65 - передняя ушная артерия; 66 - средняя височная артерия; 67 - средняя менингеальная артерия; 68 - теменная ветвь поверхностной височной артерии; 69 - лобная ветвь поверхностной височной артерии

 Ветви базилярной артерии: 

1) передняя нижняя мозжечковая артерия (a. inferior anterior cerebelli) - к мозжечку;

2) верхняя мозжечковая артерия (a. superior cerebelli) - к мозжечку; 

3) задняя мозговая артерия (a. cererbriposterior), посылающая артерии затылочной доле конечного мозга. 

4) артерии моста (aa. pontis) - к стволовой части мозга.

Рис. 178. Подключичные артерии и их ветви, вид спереди

Рис. 178. Подключичные артерии и их ветви, вид спереди: 1 - средний шейный узел; 2 - позвоночная артерия; 3 - плечевое сплетение; 4 - левый щитошейный ствол; 5 - левая подключичная петля; 6 - левая подключичная артерия; 7 - левое первое ребро; 8 - левая внутренняя грудная артерия; 9 - левый диафрагмальный нерв; 10 - левая общая сонная артерия; 11 - длинная мышца шеи; 12 - дуга аорты; 13 - плечеголовной ствол; 14 - левая и правая плечеголовные вены; 15 - верхняя полая вена; 16 - париетальная плевра; 17 - правая внутренняя грудная артерия; 18 - правое первое ребро; 19 - правая подключичная петля; 20 - купол плевры; 21 - правая подключичная артерия; 22 - правый диафрагмальный нерв; 23 - правый щитошейный ствол; 24 - задняя лестничная мышца; 25 - передняя лестничная мышца; 26 - симпатический ствол

Рис. 179. Позвоночная артерия правая, вид сбоку: 1 - атлантовая часть позвоночной артерии; 2 - поперечно-отростковая (шейная) часть позвоночной артерии; 3 - предпозвоночная часть позвоночной артерии; 4 - восходящая шейная артерия; 5, 10 - общая сонная артерия; 6 - восходящая шейная артерия; 7 - нижняя щитовидная артерия; 8 - щитошейный ствол; 9 - подключичная артерия; 11 - надлопаточная артерия; 12, 16 - внутренняя грудная артерия; 13 -плечеголовной ствол; 14 - ключица; 15 - рукоятка грудины; 17 - I ребро; 18 - II ребро; 19 - первая задняя межрёберная артерия; 20 - вторая задняя межреберная артерия; 21 - подмышечная артерия; 22 - наивысшая межреберная артерия; 23 - нисходящая лопаточная артерия; 24 - первый грудной позвонок; 25 - седьмой шейный позвонок; 26 - реберно-шейный ствол; 27 - глубокая шейная артерия; 28 - внутричерепная часть позвоночной артерии

Ветви базилярной и внутренней сонной артерий в полости черепа, вид со стороны полости черепа

Рис. 180. Ветви базилярной и внутренней сонной артерий в полости черепа, вид со стороны полости черепа:

1 - передняя мозговая артерия; 2 - передняя соединительная артерия; 3 - внутренняя сонная артерия; 4 - правая средняя мозговая артерия; 5 - задняя соединительная артерия; 6 - задняя мозговая артерия; 7 - базилярная артерия; 8 - правая позвоночная артерия; 9 - передняя спинномозговая артерия; 10 - задняя спинномозговая артерия; 11 - левая позвоночная артерия; 12 - задняя нижняя мозжечковая артерия; 13 - передняя нижняя мозжечковая артерия; 14 - верхняя мозжечковая артерия; 15 - передняя ворсинчатая артерия; 16 - левая средняя мозговая артерия

Рис. 181. Артерии на основании мозга (часть височной доли слева удалена)

Рис. 181. Артерии на основании мозга (часть височной доли слева удалена): 1 - посткоммуникационная часть передней мозговой артерии; 2 - передняя соединительная артерия; 3 - предкоммуникационная часть передней мозговой артерии; 4 - внутренняя сонная артерия; 5 - островковые артерии; 6 - средняя мозговая артерия; 7 - передняя ворсинчатая артерия; 8 - задняя соединительная артерия; 9 - предкоммуникационная часть средней мозговой артерии; 10 - посткоммуникационная часть средней мозговой артерии; 11 - базилярная артерия; 12 - латеральная затылочная артерия; 13 - левая позвоночная артерия; 14 - передняя спинномозговая артерия; 15 - задняя нижняя мозжечковая артерия; 16 - передняя нижняя мозжечковая артерия; 17 - сосудистое сплетение IV желудочка; 18 - мостовые артерии; 19 - верхняя мозжечковая артерия

2. Внутренняя грудная артерия (a. thoracica interna) отходит от нижней полуокружности подключичной артерии позади ключицы и подключичной вены, спускается по внутреннему краю хряща I ребра; проходит между внутригрудной фасцией и реберными хрящами до шестого межреберья, где разделяется на конечные артерии (рис. 182, см. рис. 179). Она посылает ветви к вилочковой железе, средостению, перикарду, грудине, молочной железе, а также: передние межреберные ветви, соединяющиеся с задними межреберными артериями, перикардо-диафрагмальную (a. pericardiacophrenica), мышечно-диафрагмальную (a. musculophrenica) - к перикарду и диафрагме и верхнюю надчревную

Рис 182. Внутренняя грудная артерия, вид сзади

Рис 182. Внутренняя грудная артерия, вид сзади: 1 - правая плечеголовная вена; 2 - верхняя полая вена; 3 - правая внутренняя грудная артерия; 4 - диафрагма; 5 - верхняя надчревная артерия; 6 - мышечнодиафрагмальная артерия; 7 - левая внутренняя грудная артерия; 8 - передние межрёберные ветви внутренней грудной артерии; 9 - грудинные ветви внутренней грудной артерии; 10 - средостенные ветви внутренней грудной артерии; 11 - левая подключичная артерия (a. epigastrica superior) - к прямой мышце живота, в толще которой анастомозирует с нижней надчревной артерией. 

Щитошейный ствол (truncus thyrocervicalis) - короткий сосуд, ответвляющийся у медиального края передней лестничной мышцы (рис. 183) и разделяющийся на 4 артерии:

1) нижнюю щитовидную (а. thyroidea inferior) - отдающую ветви к щитовидной железе, гортани, глотке, пищеводу и трахее; 

2) восходящую шейную (a. cervicalis ascendens)

3) надлопаточную артерию (a. suprascapularis) - к мышцам плечевого пояса и лопатки;

4) поперечную артерию шеи (a. trasversa colli (cervicis) - к мышцам шеи и лопатки.
Последняя артерия чаще отходит от третьего отдела подключичной артерии (см. ниже). В этих случаях от щитошейного ствола может ответвляться поверхностная артерия шеи.
Артерии второго отдела (см. рис. 179).

Рис. 183. Щитошейный ствол, правый, вид спереди: 1 - щитовидная железа; 2 - позвоночная артерия; 3,  4 - правые подключичные артерия и вена; 5 - щитошейный ствол; 6 - надлопаточная артерия; 7 - поперечная артерия шеи; 8 - нижняя щитовидная артерия; 9 - диафрагмальный нерв; 10 - правая общая сонная артерия; 11 - внутренняя яремная вена 

Реберно-шейный ствол (truncus costocervicalis) отходит позади передней лестничной мышцы и разделяется на глубокую шейную артерию (a. cervicalis profunda) - к глубоким мышцам шеи, и наивысшую межреберную артерию (a.intercostalis suprema) - к первым двум межреберьям.

Артерии третьего отдела (см. рис. 179).

Поперечная артерия шеи (a. transversa colli (cervicis) ответвляется кнаружи от передней лестничной мышцы, проходит между стволами плечевого сплетения к латеральному краю мышцы, поднимающей лопатку, где разделяется на поверхностную ветвь, идущую к мышцам плечевого пояса, и глубокую - к подлопаточной и ромбовидным мышцам. В тех случаях, когда поверхностная артерия шеи отделяется от щитошейного ствола, поперечная артерия шеи, начинаясь от третьего отдела подключичной артерии, продолжается в глубокую ветвь, которая получила название дорсальная артерия лопатки (a. dorsalis scapulae) и проходит вдоль медиального края этой кости.

Общая сонная артерия (a. carotis communis) - парная, справа отходит от плечеголовного ствола (рис. 184, 185, см. рис. 177), слева - от дуги аорты, поэтому левая артерия длиннее правой. Через верхнюю апертуру грудной клетки эти артерии восходят на шею, где располагаются по сторонам от ее органов в составе сосудисто-нервных пучков шеи, залегая кнутри и кпереди от внутренней яремной вены. Между ними и позади них лежит блуждающий нерв. Спереди почти на всем протяжении артерия прикрыта грудино-ключично-сосцевидной мышцей. В сонном треугольнике на уровне верхнего края щитовидного хряща (III шейный позвонок) она разделяется на внутреннюю и наружную сонные артерии (см. рис. 185).
Боковых ветвей не образует.

Внутренняя сонная артерия (a. carotis interna) парная, отходит от общей сонной артерии на уровне верхнего края щитовидного хряща; в артерии выделяют 4 части: шейную, каменистую, пещеристую и мозговую (рис. 186, 187, см. рис. 177, 180, 181).

Шейная часть (pars cervicalis) начинается утолщением - сонным синусом (sinus caroticus), стенка которого содержит богатый нервный аппарат с множеством баро- и хеморецепторов. В месте развилки общей сонной артерии находится сонный гломус (glomus caroticus), содержащий гломусные клетки - хромаффиноциты, вырабатывающие медиаторы. Сонные гломус и синус составляют синокаротидную рефлексогенную зону, регулирующую поступление крови к головному мозгу.

На шее внутренняя сонная артерия сначала располагается латеральнее наружной сонной артерии, затем направляется кверху и медиальнее ее, идет между внутренней яремной веной (снаружи) и глоткой (изнутри) и достигает наружной апертуры сонного канала. На шее ветвей не отдает. Каменистая часть (pars pertrosa) расположена в сонном канале пирамиды височной кости и окружена густыми венозным и нервным сплетениями; здесь артерия переходит из вертикального положения в горизонтальное. В пределах канала от нее отходят сонно-барабанные артерии (аа. caroticotimpanicae), проникающие через отверстия в стенке канала в барабанную полость, где они анастомозируют с передней барабанной и шилососцевидной артериями.

Рис 184. Общая, наружная и внутренняя сонные артерии в области шеи, правые

Рис 184. Общая, наружная и внутренняя сонные артерии в области шеи, правые: 1 - околоушные ветви поверхностной височной артерии; 2 - надблоковая артерия; 3 - артерия спинки носа; 4 - латеральные артерии носа; 5 - угловая артерия; 6 - верхняя губная артерия; 7 - нижняя губная артерия; 8 - подподбородочная артерия; 9 - лицевая артерия; 10 - надподъязычная ветвь язычной артерии; 11 - язычная артерия; 12 - верхняя гортанная артерия; 13 - верхняя щитовидная артерия; 14 - бифуркация сонной артерии; 15 - каротидный синус; 16 - нижняя щитовидная артерия; 17 - общая сонная артерия; 18 - щитошейный ствол; 19 - подключичная артерия; 20 - поперечная артерия шеи; 21 - поверхностная шейная артерия; 22 - восходящая шейная артерия; 23 - грудино-ключичнососцевидная ветвь наружной сонной артерии; 24, 27 - затылочная артерия; 25 - наружная сонная артерия; 26 - внутренняя сонная артерия; 28 - ушная ветвь затылочной артерии; 29 - задняя ушная артерия; 30 - поперечная артерия лица; 31 - поверхностная височная артерия; 32 - скулоглазничная артерия

Рис. 185. Правые сонные артерии в одноименном треугольнике

Рис. 185. Правые сонные артерии в одноименном треугольнике: 1 - задняя ушная артерия; 2 - околоушная железа; 3 - наружная сонная артерия; 4 - лицевая артерия; 5 - подподбородочная артерия; 6 - поднижнечелюстная железа; 7 - язычная артерия; 8 - надподъязычная ветвь язычной артерии; 9 - верхняя гортанная артерия; 10 - верхняя щитовидная артерия; 11 - поперечная артерия шеи; 12 - поверхностная шейная артерия; 13 - сонный треугольник; 14 - бифуркация сонной артерии; 15 - внутренняя сонная артерия; 16 - затылочная артерия

Пещеристая часть (pars cavernosa) начинается на выходе из сонного канала, когда внутренняя сонная артерия, пройдя через рваное отверстие, вступает в пещеристый венозный синус и располагается в сонной борозде, образуя так называемый сифон в виде буквы S. Изгибам сифона придается важная роль в ослаблении удара пульсовой волны. В пределах пещеристого синуса от внутренней сонной артерии отходят: базальная ветвь к намету (r. basalis tentorii), краевая ветвь к намету (r. marginalis tentorii) и менингеальная ветвь (r. meningeus) - к твердой оболочке головного мозга; ветви к тройничному узлу (rr. ganglinares trigeminales), ветви к нервам (тройничному, блоковому) (rr. nervorum); ветвь к пещеристому синусу (r. sinus cavernosi) и нижняя гипофизарная артерия (а. hypophyisialis inferior) - к гипофизу.

Мозговая часть (pars cerebralis) - самая короткая (рис. 188, 189, см. рис. 180, 181, 187). По выходе из пещеристого синуса артерия отдает верхнюю гипофизарную артерию (а. hypophysialis superior) к гипофизу; ветви к скату (rr. clivales) - к твердой оболочке в области ската; глазную, переднюю ворсинчатую, заднюю соединительную артерии и разделяется на конечные ветви: переднюю и среднюю мозговые артерии.

Глазная артерия (a. ophthalmica) следует через зрительный канал вместе со зрительным нервом в глазницу (см. рис. 187). Располагается между указанным нервом и верхней прямой мышцей; в верхнемедиальном углу глазницы, у блока разделяется на надблоковую артерию (а. supratrochlearis) и дорсальную артерию носа (a. dorsalis nasi). Глазная артерия отдает ряд ветвей к глазу и слезной железе, а также ветви, идущие на лицо: медиальные и латеральные артерии век (aa. palpebrales mediales et laterales), образующие совместными анастомозами дуги верхнего и нижнего век (arcus palpebrales siperior et inferior); надглазничную артерию (a. supraorbitalis) к лобной мышце и коже лба; заднюю и переднюю решётчатые артерии (aa. ethmoidales posterior et anterior) - к ячейкам решётчатого лабиринта и полости носа (от передней отходит передняя менингеальная ветвь (r. meningeus anterior) к твердой оболочке головного мозга).

Рис. 186. Внутренняя сонная артерия, вид справа:

Передняя ворсинчатая артерия (a. choroidea anterior) - тонкая ветвь, отходит от задней поверхности внутренней сонной артерии, идет вдоль зрительного тракта к нижнему рогу бокового желудочка конечного мозга, отдает ветви к мозгу и входит в сосудистое сплетение бокового желудочка.

Задняя соединительная артерия (a. communicans posterior) соединяет внутреннюю сонную артерию с задней мозговой артерией (см. рис. 180, 181).

Передняя мозговая артерия (a. cerebri anterior) идет на медиальную поверхность лобной доли мозга, прилегая сначала к обонятельному треугольнику, затем в продольной щели большого мозга переходит на верхнюю поверхность мозолистого тела; кровоснабжает конечный мозг. Недалеко от своего начала правая и левая передние мозговые артерии соединяются посредством передней соединительной артерии (a. communicans anterior) (см. рис. 181, 188).

Рис. 186. Внутренняя сонная артерия, вид справа:

1 - надблоковая артерия; 2 - артерия спинки носа; 3 - длинные задние ресничные артерии; 4 - подглазничная артерия; 5 - передние верхние альвеолярные артерии; 6 - угловая артерия; 7 - задняя верхняя альвеолярная артерия; 8 - восходящая нёбная артерия; 9 - глубокая артерия языка; 10 - подъязычная артерия; 11 - лицевая артерия (перерезана); 12 - язычная артерия; 13 - надподъязычная ветвь язычной артерии; 14 - наружная сонная артерия; 15 - верхняя щитовидная артерия; 16 - верхняя гортанная артерия; 17 - грудино-ключично-сосцевидная ветвь (перерезана); 18 - ветви верхней щитовидной артерии; 19 - нижняя щитовидная артерия; 20 - пищеводные ветви; 21, 35 - общая сонная артерия; 22 - трахеальные ветви нижней щитовидной артерии; 23, 36 - позвоночная артерия; 24 - внутренняя грудная артерия; 25 - плечеголовной ствол; 26 - подключичная артерия; 27 - реберно-шейный ствол; 28 - наивысшая межрёберная артерия; 29 - щитошейный ствол; 30 - надлопаточная артерия; 31 - глубокая шейная артерия; 32 - восходящая шейная артерия; 33 - поперечный отросток VI шейного позвонка; 34 - глоточные ветви; 37, 50 - внутренняя сонная артерия; 38 - восходящая глоточная артерия; 39 - затылочная артерия; 40 - атлантовая часть позвоночной артерии; 41 - внутричерепная часть правой позвоночной артерии; 42 - левая позвоночная артерия; 43 - нижняя барабанная артерия; задняя артерия твердой мозговой оболочки; 44 - задняя менингеальная артерия; 45 - базилярная артерия; 46 - верхнечелюстная артерия; 47 - крыловидно-нёбная артерия; 48 - задняя мозговая артерия; 49 - задняя соединительная артерия; 51 - глазная артерия; 52 - задние короткие ресничные артерии; 53 - задняя решётчатая артерия; 54 - надглазничная артерия; 55 - передняя решётчатая артерия

Рис. 187. Пещеристая и мозговая части внутренней сонной артерии (глазная артерия, верхняя стенка глазницы удалена)

Рис. 187. Пещеристая и мозговая части внутренней сонной артерии (глазная артерия, верхняя стенка глазницы удалена): 1 - надглазничная артерия; 2 - блок; 3 - чешуя лобной кости; 4 - слёзная железа; 5 - задние короткие ресничные артерии; 6 - слезная артерия; 7 - глазная артерия; 8, 9 - внутренняя сонная артерия; 10 - центральная артерия сетчатки; 11 - задние решётчатые артерия и вена; 12 - передняя менингеальная артерия; 13 - передние решётчатые артерия и вена; 14 - задние длинные решётчатые артерии и вены 

Средняя мозговая артерия (a. cerebri media) более крупная, располагается в латеральной борозде, по которой восходит вверх и латерально; отдает ветви к конечному мозгу (см. рис. 181, 189).

В результате соединения всех мозговых артерий: передних мозговых посредством передней соединительной, средних и задних мозговых - задней соединительной - на основании мозга формируется артериальный круг большого мозга (circulus arteriosus cerebri), имеющий важное значение для коллатерального кровообращения в бассейнах мозговых артерий (см. рис. 181).

Рис. 188. Артерии на медиальной и нижней поверхностях полушария головного мозга:

Рис. 188. Артерии на медиальной и нижней поверхностях полушария головного мозга:

1 - мозолистое тело; 2 - свод; 3, 7 - передняя мозговая артерия; 4 - задняя мозговая артерия; 5 - задняя соединительная артерия; 6 - внутренняя сонная артерия

Рис. 189. Ветви средней мозговой артерии на дорсолатеральной поверхности полушария головного мозга

Рис. 189. Ветви средней мозговой артерии на дорсолатеральной поверхности полушария головного мозга

Рис. 190. Наружная сонная артерия, вид слева (ветвь нижней челюсти удалена)

Рис. 190. Наружная сонная артерия, вид слева (ветвь нижней челюсти удалена): 1 - лобная ветвь поверхностной височной артерии; 2 - теменная ветвь поверхностной артерии; 3 - поверхностная височная артерия; 4 - задняя ушная артерия; 5 - затылочная артерия; 6 - верхнечелюстная артерия; 7, 11 - восходящая глоточная артерия; 8 - восходящая нёбная артерия; 9, 15 - лицевая артерия; 10 - язычная артерия; 12 - верхняя щитовидная артерия; 13 - миндаликовая ветвь лицевой артерии; 14 - подподбородочная артерия; 16 - подбородочная артерия; 17 - нижняя губная артерия; 18 - верхняя губная артерия; 19 - щечная артерия; 20 - нисходящая нёбная артерия; 21 - клиновидно-нёбная артерия; 22 - подглазничная артерия; 23 - угловая артерия; 24 - артерия спинки носа; 25 - надблоковая артерия; 26 - нижняя альвеолярная артерия; 27 - средняя менингеальная артерия

Наружная сонная артерия (a. carotis externa) парная, пролегает в пределах от бифуркации общей сонной артерии до уровня шейки нижней челюсти, где в толще околоушной слюнной железы разделяется на концевые ветви - верхнечелюстную и поверхностную височные артерии (рис. 190, см. рис. 177, 184, 185). От нее отходят ветви к стенкам ротовой и носовой полостей, своду черепа, к твердой оболочке головного мозга.
На шее, в пределах сонного треугольника, наружная сонная артерия прикрыта лицевой, язычной и верхней щитовидной венами, лежит поверхностнее внутренней сонной артерии. Здесь от нее отходят ветви кпереди, медиально и кзади.

Передние ветви:

Верхняя щитовидная артерия (a. thyroidea superior) отходит вблизи бифуркации общей сонной артерии ниже большого рога подъязычной кости, идет дугообразно вперед и вниз к верхнему полюсу щитовидной железы (рис. 191, см. рис. 177, 184, 186). Анастомозирует с нижней щитовидной артерией и верхней щитовидной артерией противоположной стороны. Отдает подподъязычную ветвь (r. infrahyoideus), грудино-ключично-сосцевидную ветвь (r. sternocleidomastoideus) и верхнюю гортанную артерию (а. laringea superior), сопровождающую верхний гортанный нерв и кровоснабжающую мышцы и слизистую оболочку гортани выше голосовой щели.

Язычная артерия (а. lingualis) начинается от наружной сонной артерии, идет вверх и кпереди по среднему констриктору глотки к верхушке большого рога подъязычной кости, где пересекается подъязычным нервом (рис. 192, 193, см. рис. 177, 184-186, 191). Далее располагается медиальнее подъязычно-язычной мышцы соответственно треугольнику Пирогова (некоторые авторы называют его язычным треугольником; он ограничен спереди краем челюстно-подъязычной мышцы, снизу - сухожилием двубрюшной мышцы, сверху - 


Рис. 191. Верхняя щитовидная и язычная артерии, вид спереди

Рис. 191. Верхняя щитовидная и язычная артерии, вид спереди: 1 - подъязычная железа; 2 - левые подъязычные артерия и вена; 3 - левая глубокая артерия языка; 4, 14 - наружная сонная артерия; 5 - левая верхняя щитовидная артерия; 6 - бифуркация общей сонной артерии; 7 - верхняя гортанная артерия; 8 - общая сонная артерия; 9 - щитовидный хрящ; 10 - левая доля щитовидной железы; 11 - правая доля щитовидной железы; 12 - железистые ветви правой верхней щитовидной артерии; 13 - подъязычная кость; 15 - правая верхняя щитовидная артерия; 16 - правая язычная артерия; 17, 19 - правая подъязычная артерия (разрезана); 18 - правая глубокая артерия языка

Рис 192. Язычная артерия, вид слева:

Рис 192. Язычная артерия, вид слева: 

1 - язычная артерия; 2 - наружная сонная артерия; 3 - внутренняя яремная вена; 4 - лицевая вена; 5 - язычная вена; 6 - надподъязычная артерия; 7 - дорсальная артерия языка; 8 - поднижнечелюстной проток; 9 - артерия в уздечке языка; 10 - глубокая артерия языка и сопровождающие вены

Рис. 193. Язычная артерия в язычном треугольнике, вид сбоку

Рис. 193. Язычная артерия в язычном треугольнике, вид сбоку: 1 - лицевая артерия и вена; 2 - поднижнечелюстная железа; 3 - подъязычно-язычная мышца; 4 - подъязычный нерв; 5 - язычный треугольник; 6, 9 - язычная артерия; 7 - сухожилие двубрюшной мышцы; 8 - подъязычная кость; 10 - наружная сонная артерия; 11 - околоушная железа; 12 - шилоподъязычная мышца подъязычным нервом). Продолжается в языке как глубокая артерия языка (а. profunda linguae) и идет к верхушке языка. Отдает надподъязычную ветвь (r. suprahyoideus) к надподъязычным мышцам; подъязычную артерию (а. sublingualis), проходящую вперед и латерально и кровоснабжающую подъязычную слюнную железу и слизистую оболочку дна ротовой полости; дорсальные ветви языка (rr. dorsales linguae) - 1- 3 ветви, восходящие к спинке языка и кровоснабжающие мягкое нёбо, надгортанник, нёбную миндалину. 

Лицевая артерия (a. facialis) отходит вблизи угла нижней челюсти, нередко общим стволом с язычной артерией (язычно-лицевой ствол, truncus linguofacialis), направляется вперед и вверх по верхнему констриктору глотки медиальнее заднего брюшка двубрюшной мышцы и шилоподъязычной мышцы (см. рис. 177, 184).
Далее идет по глубокой поверхности поднижнечелюстной слюнной железы, перегибается через основание нижней челюсти впереди жевательной мышцы и восходит извилисто к медиальному углу глазной щели, где кончается угловой артерией (а. angularis). Последняя анастомозирует с дорсальной артерией носа. 

От лицевой артерии отходят артерии к соседним органам:

1) восходящая нёбная артерия (а. palatina ascendens) идет кверху между шилоглоточной и шилоязычной мышцами, проникает через глоточно-базилярную фасцию и снабжает кровью мышцы глотки, нёбную миндалину, мягкое нёбо;

2) миндаликовая ветвь (r. tonsillaris) прободает верхний констриктор глотки и разветвляется в глоточной миндалине и корне языка (см. рис. 186); 

3) железистые ветви (rr. glandulares) идут к поднижнечелюстной слюнной железе;

4) подподбородочная артерия (а. submentalis) отходит от лицевой артерии у места ее перегиба через основание нижней челюсти и идет кпереди под челюстно- подъязычной мышцей, отдавая ветви к ней и к двубрюшной мышце, затем подходит к подбородку, где разделяется на поверхностную ветвь к подбородку и глубокую ветвь, перфорирующую челюстно-подъязычную мышцу и кровоснабжающую дно полости рта и подъязычную слюнную железу; 

5) нижняя губная артерия (а. labialis inferior) ответвляется ниже угла рта, извилисто продолжается между слизистой оболочкой нижней губы и круговой мышцей рта, соединяясь с одноименной артерией другой стороны; дает ветви к нижней губе;

6) верхняя губная артерия (а. labialis superior) отходит на уровне угла рта и проходит в подслизистом слое верхней губы; анастомозирует с одноименной артерией противоположной стороны, составляя околоротовой артериальный круг.
Отдает ветви к верхней губе.

Медиальная ветвь: 

Восходящая глоточная артерия (а. pharyngea ascendens) - самая тонкая из шейных ветвей; парная, ответвляется вблизи бифуркации общей сонной артерии, проходит вверх, глубже внутренней сонной артерии, к глотке и основанию черепа (см. рис. 186). Кровоснабжает глотку, мягкое нёбо и отдает заднюю менингеальную артерию (а. meningea posterior) к твердой мозговой оболочке и нижнюю барабанную артерию (а. tympanica inferior) к медиальной стенке барабанной полости.

Задние ветви:

Затылочная артерия (а. occipitalis) начинается от задней поверхности наружной сонной артерии, напротив начала лицевой артерии, идет вверх и назад между грудино-ключично-сосцевидной и двубрюшной мышцами к сосцевидному отростку, где ложится в сосцевидную вырезку и в подкожной клетчатке затылка разветвляется вплоть до темени (рис. 194, см. рис. 177, 184, 185). Отдает грудино- ключичнососцевидные ветви (rr. sternocleidomastoidei) к одноименной мышце; ушную ветвь (r. auricularis) - к ушной раковине; затылочные ветви (rr. occipitals) - к мышцам и коже затылка; менингеальную ветвь (r. meningeus) - к твердой оболочке головного мозга и нисходящую ветвь (r. descendens) - к задней группе мышц шеи.

Задняя ушная артерия (а. auricilaris posterior) отходит иногда общим стволом с затылочной артерией от задней полуокружности наружной сонной артерии, на уровне верхушки шиловидного отростка, восходит косо кзади и кверху между хрящевым наружным слуховым проходом и сосцевидным отростком в заушную зону (см. рис. 177, 184, 185, 194). Посылает ветвь к околоушной железе (r. parotideus), кровоснабжает мышцы и кожу затылка (r. occipitalis) и ушную раковину (r. auricularis). Одна из ее ветвей - шилососцевидная артерия (а. stylomastoidea) проникает в барабанную полость через шилососцевидное отверстие и канал лицевого нерва, отдает ветви к лицевому нерву, а также заднюю барабанную артерию (а. tympanica posterior), которая сосцевидными ветвями (rr. mastoidei) кровоснабжает слизистую оболочку барабанной полости и ячеек сосцевидного отростка (рис. 195). Задняя ушная артерия анастомозирует с ветвями передней ушной и затылочной артерий и с теменными ветвями поверхностной височной артерии.

Рис. 194. Наружная сонная артерия и ее ветви

Рис. 194. Наружная сонная артерия и ее ветви, вид сбоку: 1 - лобная ветвь поверхностной височной артерии; 2 - передняя глубокая височная артерия; 3 - подглазничная артерия; 4 - надглазничная артерия; 5 - надблоковая артерия; 6 - верхнечелюстная артерия; 7 - артерия спинки носа; 8 - задняя верхняя альвеолярная артерия; 9 - угловая артерия; 10 - подглазничная артерия; 11 - жевательная артерия; 12 - боковая носовая ветвь лицевой артерии; 13 - щечная артерия; 14 - крыловидная ветвь верхнечелюстной артерии; 15, 33 - лицевая вена; 16 - верхняя губная артерия; 17, 32 - лицевая артерия; 18 - нижняя губная артерия; 19 - зубные ветви нижней альвеолярной артерии; 20 - подбородочная ветвь нижней альвеолярной артерии; 21 - подподбородочная артерия; 22 - поднижнечелюстная слюнная железа; 23 - железистые ветви лицевой артерии; 24 - щитовидная железа; 25 - общая сонная артерия; 26 - верхняя гортанная артерия; 27 - верхняя щитовидная артерия; 28 - внутренняя сонная артерия; 29, 38 - наружная сонная артерия; 30 - внутренняя яремная вена; 31 - язычная артерия; 34 - занижнечелюстная вена; 35, 41 - затылочная артерия; 36 - нижняя альвеолярная артерия; 37 - челюстно-подъязычная ветвь нижней альвеолярной артерии; 39 - сосцевидный отросток; 40 - верхнечелюстная артерия; 42 - задняя ушная артерия; 43 - средняя менингеальная артерия; 44 - поперечная артерия лица; 45 - задняя глубокая височная артерия; 46 - средняя височная артерия; 47 - поверхностная височная артерия; 48 - теменная ветвь поверхностной височной артерии.

На лице наружная сонная артерия располагается в занижнечелюстной ямке, в паренхиме околоушной слюнной железы или глубже нее, кпереди и латеральнее внутренней сонной артерии. На уровне шейки нижней челюсти она разделяется на конечные ветви: верхнечелюстную и поверхностную височную артерии.

Поверхностная височная артерия (а. temporalis superficialis) - тонкая конечная ветвь наружной сонной артерии (см. рис. 177, 184, 194). Лежит сначала в околоушной слюнной железе впереди ушной раковины, далее - над корнем скулового отростка идет под кожу и располагается позади ушно-височного нерва в височной области. Несколько выше ушной раковины разделяется на конечные ветви: переднюю, лобную (r. frontalis), и заднюю, теменную (r. parietalis), кровоснабжающие кожу одноименных областей свода черепа. От поверхностной височной артерии отходят ветви к околоушной железе (rr. parotidei), передние ушные ветви (rr. auriculares anteriores) к ушной раковине. Кроме того, от нее отходят более крупные ветви к образованиям лица: 

1) поперечная артерия лица (a. transversa faciei) ответвляется в толще околоушной слюнной железы ниже наружного слухового прохода, выходит из-под переднего края железы вместе со щечными ветвями лицевого нерва и разветвляется над протоком железы; кровоснабжает железу и мышцы лица. Анастомозирует с лицевой и подглазничной артериями; 

2) скулоглазничная артерия (а. zygomaticifacialis) отходит выше наружного слухового прохода, идет вдоль скуловой дуги между пластинками височной фасции к латеральному углу глазной щели; кровоснабжает кожу и подкожные образования в области скуловой кости и глазницы; 

3) средняя височная артерия (a. temporalis media) отходит над скуловой дугой, перфорирует височную фасцию; кровоснабжает височную мышцу; анастомозирует с глубокими височными артериями.


Рис. 195. Артерии среднего уха:

Рис. 195. Артерии среднего уха:

а - вид изнутри на барабанную стенку: 1 - верхняя ветвь передней барабанной артерии; 2 - ветви передней барабанной артерии к наковальне; 3 - задняя барабанная артерия; 4 - глубокая ушная артерия; 5 - нижняя ветвь глубокой барабанной артерии; 6 - передняя барабанная артерия; 
б - вид изнутри на лабиринтную стенку: 1 - верхняя ветвь передней барабанной артерии; 2 - верхняя барабанная артерия; 3 - сонно-барабанная артерия; 4 - нижняя барабанная артерия Верхнечелюстная артерия (а. maxillaris) - конечная ветвь наружной сонной артерии, но более крупная, чем поверхностная височная артерия (рис. 196, см. рис. 177, 194). Отходит в околоушной слюнной железе позади и ниже височно- нижнечелюстного сустава, идёт кпереди между ветвью нижней челюсти и крыловидно-нижнечелюстной связкой параллельно и ниже начальной части ушно- височного нерва. Располагается на медиальной крыловидной мышце и ветвях нижнечелюстного нерва (язычном и нижнем альвеолярном), затем идёт вперед по латеральной (иногда по медиальной) поверхности нижней головки латеральной крыловидной мышцы, входит между головками этой мышцы в крыловидно-нёбную ямку, где отдает конечные ветви.
Топографически выделяют 3 части верхнечелюстной артерии: нижнечелюстную (pars mandibularis); крыловидную (pars pterygoidea) и крыловидно-нёбную (pars pterygopalatina).
Ветви нижнечелюстной части (рис. 197, см. рис. 194, 196):

 Глубокая ушная артерия (a. auricularis profunda) проходит назад и кверху к наружному слуховому проходу, отдаёт ветви к барабанной перепонке.

Передняя барабанная артерия (a. tympanica anterior) проникает по барабанно- чешуйчатой щели в барабанную полость, снабжает кровью её стенки и барабанную перепонку. Нередко отходит общим стволом с глубокой ушной артерией.
Анастомозирует с артерией крыловидного канала, шилососцевидной и задней барабанной артериями.

Средняя менингеальная артерия (a. meningea media) поднимается между крыловидно-нижнечелюстной связкой и головкой нижней челюсти по медиальной поверхности латеральной крыловидной мышцы, между корешками ушно- височного нерва к остистому отверстию и через него входит в твёрдую оболочку головного мозга. Обычно залегает в борозде чешуи височной кости и борозде теменной кости. Разделяется на ветви: теменную (r. parietalis), лобную (r. frontalis) и глазничную (r. orbitalis). Анастомозирует с внутренней сонной артерией через анастомотическую ветвь со слезной артерией (r. anastomoticum cum a. lacrimalis). Отдаёт также каменистую ветвь (r. petrosus) к тройничному узлу, верхнюю барабанную артерию (a. tympanica superior) к барабанной полости.

Нижняя альвеолярная артерия (a. alveolaris inferior) спускается между медиальной крыловидной мышцей и ветвью нижней челюсти вместе с нижним альвеолярным нервом к отверстию нижней челюсти. До входа в канал нижней челюсти отдает челюстно-подъязычную ветвь (r. mylohyoideus), которая располагается в одноименной борозде и кровоснабжает челюстно-подъязычную и медиальную крыловидную мышцы. В канале нижняя альвеолярная артерия отдает к зубам зубные ветви (rr. dentales), которые через отверстия на верхушке корня зуба попадают в корневые каналы, а также к стенкам зубных альвеол и к деснам - околозубные ветви (rr. peridentales). На уровне 1-го (или 2-го) малого коренного зуба из канала нижней челюсти от нижней альвеолярной артерии, через подбородочное отверстие ответвляется подбородочная артерия (a. mentalis) к подбородку. Ветви крыловидной части (рис. 197, см. рис. 194, 196): Жевательная артерия (а. masseterica) идет вниз и кнаружи через вырезку нижней челюсти к глубокому слою жевательной мышцы; отдает ветвь к височно-нижнечелюстному суставу. 

Глубокие височные артерии, передняя и задняя (aa. temporales profundae anterior et posterior) идут в височную ямку, располагаясь между височной мышцей и костью. Кровоснабжают височную мышцу. Анастомозируют с поверхностной и средней височными и слезной артериями.

Крыловидные ветви (rr. pterygoidei) снабжают кровью крыловидные мышцы.

Щечная артерия (a. buccalis) проходит вместе со щечным нервом вперед между медиальной крыловидной мышцей и ветвью нижней челюсти к щечной мышце, в которой разделяется; анастомозирует с лицевой артерией.
Ветви крыловидно-нёбной части (рис. 198, см. рис. 186):

 Рис. 196. Верхнечелюстная артерия


Рис. 196. Верхнечелюстная артерия: а - вид снаружи (ветвь челюсти удалена): 1 - передняя глубокая височная артерия и нерв; 2 - задняя глубокая височная артерия и нерв; 3 - жевательная артерия и нерв; 4 - верхнечелюстная артерия; 5 - поверхностная височная артерия; 6 - задняя ушная артерия; 7 - наружная сонная артерия; 8 - нижняя альвеолярная артерия; 9 - медиальная крыловидная артерия и мышца; 10 - щечная артерия и нерв; 11 - задняя верхняя альвеолярная артерия; 12 - подглазничная артерия; 13 - клиновидно- нёбная артерия; 14 - латеральные крыловидные артерия и мышца;

 б - вид снаружи на перегородку полости носа: 1 - клиновидно-нёбная артерия; 2 - нисходящая нёбная артерия; 3 - артерия крыловидного канала; 4 - передняя глубокая височная артерия и нерв; 5 - задняя глубокая височная артерия и нерв; 6 - средняя менингеальная артерия; 7 - глубокая ушная артерия; 8 - передняя барабанная артерия; 9 - поверхностная височная артерия; 10 - наружная сонная артерия; 11 - жевательная артерия; 12 - крыловидные артерии; 13 - малые нёбные артерии; 14 - большие нёбные артерии; 15 - резцовая артерия; 16 - щечная артерия; 17 - задняя верхняя альвеолярная артерия; 18 - носонёбная артерия; 19 - задняя перегородочная артерия

Рис. 197. Ветви нижнечелюстной части верхнечелюстной артерии:

Рис. 197. Ветви нижнечелюстной части верхнечелюстной артерии: 1 - передняя барабанная артерия; 2 - глубокая ушная артерия; 3 - задняя ушная артерия; 4 - наружная сонная артерия; 5 - верхнечелюстная артерия; 6 - средняя менингеальная артерия

Рис. 198. Верхнечелюстная артерия в крыловидно-нёбной ямке (схема): 1 - крылонёбный узел; 2 - подглазничные артерия и нерв в нижней глазничной щели; 3 - клиновидно-нёбное отверстие; 4 - клиновидно-нёбная артерия задние верхние носовые нервы; 5 - глоточная ветвь верхнечелюстной артерии; 6 - большой нёбный канал; 7 - большая нёбная артерия; 8 - малая нёбная артерии; 9 - нисходящая нёбная артерия; 10 - артерия и нерв крыловидного канала; 11 - верхнечелюстная артерия; 12 - крыловидно-верхнечелюстная щель; 13 - круглое отверстие 

Задняя верхняя альвеолярная артерия (a. alveolaris superior posterior) отходит в месте перехода верхнечелюстной артерии в крыловидно- нёбную ямку позади бугра верхней челюсти. Через задние верхние альвеолярные отверстия проникает в кость; разделяется на зубные ветви (rr. dentales), проходящие вместе с задними верхними альвеолярными нервами в альвеолярные каналы в заднелатеральной стенке верхней челюсти к корням верхних больших коренных зубов. От зубных ветвей отходят околозубные ветви (rr. peridentales) к тканям, окружающим корни зубов.

Подглазничная артерия (a. infraorbitalis) ответвляется в крыловидно- нёбной ямке, являясь продолжением ствола верхнечелюстной артерии, сопровождает подглазничный нерв. Вместе с подглазничным нервом через нижнюю глазничную щель входит в глазницу, где располагается в одноименной борозде и в канале.
Выходит через подглазничное отверстие в клыковую ямку. Конечные ветви снабжают кровью прилежащие лицевые образования. Анастомозируют с глазной,щечной и лицевой артериями. В глазнице посылает ветви к глазным мышцам, слёзной железе. Через одноименные каналы верхней челюсти отдает передние верхние альвеолярные артерии (aa. alveolares superiors anterior et posterior), от которых к корням зубов и околозубным образованиям (rr. peridentales) направляются зубные ветви (rr. dentales).

Артерия крыловидного канала (a. canalis pterygoidei) нередко отходит от нисходящей нёбной артерии, направляется в одноименном канале вместе с одноименным нервом к верхнему отделу глотки; кровоснабжает слуховую трубу, слизистую оболочку барабанной полости и носовую часть глотки.

Нисходящая нёбная артерия (a. palatine descendens) проходит в большом небном канале, где разделяется на большую нёбную артерию (a. palatine major) и малые нёбные артерии (aa. palatinae minores), выходящие, соответственно, через большое и малые нёбные отверстия на нёбо. Малые нёбные артерии идут к мягкому нёбу, а большая распространяется кпереди, кровоснабжает твердое нёбо и оральные поверхности десен. Анастомозирует с восходящей нёбной артерией.

Клиновидно-нёбная артерия (a. sphenopalatina) идет через одноименное отверстие в носовую полость и разделяется на задние носовые латеральные артерии (aa. nasalis posteriors laterales) и задние перегородочные ветви (rr. septales posteriors). Кровоснабжает задние ячейки решетчатого лабиринта, слизистую оболочку боковой стенки носовой полости и перегородки носа; анастомозирует с большой нёбной артерией (табл. 13).

Таблица 13. Межсистемные анастомозы артерий головы и шеи

Таблица 13. Межсистемные анастомозы артерий головы и шеи

Вопросы для самоконтроля 

1. Какие ветви отходят от подключичной артерии в каждом из отделов? 

2. Какие ветви позвоночной артерии вы знаете? С какими артериями она анастомозирует? 

3. Где располагается щитошейный ствол? Какие ветви он дает? 

4. Какие части топографически различают во внутренней сонной артерии? 

5. Какие ветви отходят от каждой части внутренней сонной артерии? 

6. Какие артерии кровоснабжают содержимое глазницы? 

7. Какими артериями образуется артериальный круг большого мозга?

 8. Как можно представить себе топографию наружной сонной артерии? 

9. Какие передние ветви наружной сонной артерии вам известны?

10. Какое положение занимает ствол лицевой артерии? 

11. Какие артерии отходят от лицевой артерии? Какие анастомозы имеет лицевая артерия?

12. Какие артерии отходят от верхнечелюстной артерии в каждой ее части? 

13. Какие вы знаете анастомозы верхнечелюстной артерии?

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Название и адрес медицинского центра

_______________________________________________________

Ультразвуковое исследование

Контрон СИГМА 210, ирис. Электронные линейный датчик 7,5 МГц и конвексный - 3,5 МГц

(название ультразвукового оборудования)

Врач ______________________________________

Пациент __________________________________

Исследование № ____________ от __.__.____

Исследуемый орган______________________


Протокол ультразвукового исследования печени

(УЗИ шаблон (пример, бланк) протокола ультразвукового описания печени)


Печень границы печени не расширены: нижний край правой доли у рёберной дуги, не закруглён, переднезадний размер правой доли 117 мм., косой вертикальный 145 мм., переднезадний размер левой доли 56 мм., вертикальный 89 мм.; контуры ровные, диафрагмальный контур чёткий, эхоструктура изоэхогенная, однородная, рисунок зернистости чёткий; внутрипечёночные жёлчные протоки не расширены, свободны. Общий жёлчный проток диаметром 4 мм., стенки не утолщены, просвет свободный.

Регионарные лимфатические узлы не визуализируются.

Заключение

Эхоструктурных изменений печени не выявлено.


Ультразвуковая диагностика не является основным методом и требует подтверждения диагноза другими методами обследования.


Подпись__________________________



Все протоколы УЗИ патология и норма

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине shopdon.ru

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине  shopdon.ru

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине shopdon.ru

Книга "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Купить книгу "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Фундаментальное клиническое руководство подготовлено коллективом ведущих специалистов ультразвуковой диагностики. В книге представлены разделы, посвященные ультразвуковым диагностическим системам, физическим принципам ультразвуковой диагностики, ультразвуковой диагностике заболеваний печени, желчевыводящей системы, поджелудочной железы, пищевода, желудка, кишечника, селезенки, почек, мочевого пузыря, предстательной железы и семенных пузырьков, надпочечников, органов мошонки, лимфатической системы, молочных, щитовидной, околощитовидных и слюнных желез, органов грудной клетки.
Книга предназначена для врачей ультразвуковой диагностики, рентгенологов, радиологов, терапевтов, гастроэнтерологов, эндокринологов, хирургов, урологов, и всех заинтересованных специалистов.

Купить книгу "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Книга "Эхография в гинекологии" - Озерская И. А.

Купить книгу "Эхография в гинекологии" - Озерская И. А.

В 3 издании монографии «Эхография в гинекологии» рассмотрены все основные вопросы ультразвуковой диагностики в гинекологии, с которыми ежедневно сталкивается врач, обследующий органы малого таза у женщин в амбулаторной практике и гинекологическом стационаре. Внесены дополнения результатов собственных научных исследований, а также опыта работы ведущих лабораторий мира и нашей страны за последнее время. Особое внимание уделено вопросам стандартизации при обследовании миометрия, эндометрия и яичников, основанных на рекомендациях групп международных экспертов. Написаны новые главы, посвященные послеродовому периоду в норме и при осложнениях, ультразвуковому мониторингу при проведении аборта как медикаментозного, так и путем вакуум-аспирации, а также послеабортным и послеоперационным осложнениям, включая проблему рубца на матке.
Каждая глава состоит из небольшого этио-патогенетического раздела, подробно освещены вопросы эхографической диагностики, включая данные цветового картирования, допплерометрии, новых, недостаточно распространённых методик и дифференциально-диагностические критерии. Каждая глава иллюстрирована большим количеством эхограмм как типичного, так и нетипичного изображения рассматриваемой патологии. Определены диагностические возможности эхографии, цветового картирования и допплерометрии во всех рассматриваемых разделах гинекологии. Представлены новые направления диагностики и лечения, внедряемые в гинекологическую практику в течение последних лет. В приложение включены таблицы всех нормативных параметров, предложены протоколы ультразвукового исследования органов малого таза и проведения эхогистеросальпингоскопии.
Книга рассчитана на врачей ультразвуковой диагностики, гинекологов, акушеров, онкогинекологов, хирургов и врачей смежных специальностей.

Купить книгу "Эхография в гинекологии" - Озерская И. А.

Книга "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Купить книгу "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Данное издание представляет собой практическое руководство по эхокардиографии, в котором отражены все современные технологии, применяемые в настоящее время. Исключительный интерес для специалистов представляет CD-ROM с подборкой видеоклипов по всем основным разделам, включающих редкие случаи диагностики.

Особенность издания - попытка объединить и сравнить результаты эхокардиографического исследования сердца и паталогоанатомический материал по всем основным разделам.
Большой интерес представляют разделы, содержащие новые технологии исследования, такие как трех- и четырехмерная реконструкция сердца в реальном времени, тканевая допплерография. Большое внимание уделено также классическим разделам эхокардиографии – оценке легочной гипертензии, клапанных пороков сердца, ишемической болезни сердца и ее осложнений и т.д.

В книге представлены огромный иллюстративный материал, большое количество схем и рисунков, приведены алгоритмы тактики проведения исследования и диагностики по всем разделам эхоКГ.
Руководство помогает разрешить спорные и злободневные вопросы, позволяет ориентироваться в расчетах и измерениях, содержит необходимую справочную информацию.
Книга написана сотрудниками кафедры ультразвуковой диагностики ГБОУ ДПО «Российская медицинская академия последипломного образования'' Министерства здравоохранения Российской Федерации» (база – ГКБ им. С.П. Боткина, Москва).

Издание предназначено для специалистов эхокардиографии, врачей ультразвуковой и функциональной диагностики, кардиологов и терапевтов.

Купить книгу "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Книга "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Купить книгу "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Данное издание является наиболее полным иллюстрированным руководством по ультразвуковой диагностике в акушерстве и гинекологии.

Авторы постарались охватить все известные на сегодняшний день режимы УЗИ, но тем не менее основной акцент делается на наиболее доступных методиках, технике, глубоком анализе результатов. Результаты ультразвуковых исследований приводятся в тесной корреляции с клиническими и лабораторными данными, что значительно повышает ценность диагностической информации и формирует у врача клиническое мышление. Первый том посвящен УЗИ в акушерстве.

Рассматриваются ультразвуковые параметры матери и плода на разных сроках гестации, различные варианты патологии беременности.

Отдельные главы посвящены ультразвуковой допплерографии и трехмерному УЗИ в режиме реального времени, ультразвуковой поддержке инвазивных диагностических и лечебных процедур. В приложении дается подробная справочная фетометрическая информация.

Книга предназначена для акушеров-гинекологов, специалистов по ультразвуковой диагностике женских консультаций и акушерских стационаров, студентов медицинских вузов и факультетов.

Купить книгу "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Книга "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Купить книгу "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Данное издание является наиболее полным иллюстрированным руководством по ультразвуковой диагностике в акушерстве и гинекологии. Авторы постарались охватить все известные на сегодняшний день режимы УЗИ, но тем не менее основной акцент делается на наиболее доступных методиках, технике, глубоком анализе результатов. Результаты ультразвуковых исследований приводятся в тесной корреляции с клиническими и лабораторными данными, что значительно повышает ценность диагностической информации и формирует у врача клиническое мышление.

Второй том посвящен проблемам ультразвуковых исследований в гинекологической практике: УЗ-анатомии здоровой женщины, порокам развития и заболеваниям женского полового тракта. Отдельные главы посвящены трансвагинальному и трансректальному методам исследования, а также УЗИ молочных желез.

Книга предназначена для акушеров-гинекологов, специалистов по ультразвуковой диагностике женских консультаций и акушерских стационаров, студентов медицинских вузов и факультетов.

Купить книгу "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Книга "Основы ультразвукового исследования сосудов" - В. П. Куликов

Купить книгу "Основы ультразвукового исследования сосудов" - В. П. Куликов

Руководство «Основы ультразвукового исследования сосудов» предназначено для тех, кто хотел бы получить по возможности краткую, но достаточно полную и главное практически полезную информацию по ультразвуковой диагностике сосудистой патологии. Автор, профессор Куликов Владимир Павлович, известен специалистам по первой в России книге, посвященной дуплексному сканированию сосудов, и руководству для врачей по ультразвуковой диагностике сосудистых заболеваний.
В Руководстве представлены важнейшие сведения о технике исследования, ультразвуковых критериях нормы и патологии кровеносных сосудов, основанные на международных согласительных документах и практическом опыте работы автора. Особое внимание уделено стандартизации техники, объема и терминологии описания ультразвукового исследования сосудов.
Книга предназначена для врачей ультразвуковой и функциональной диагностики, сосудистых хирургов, неврологов и кардиологов, а так же для студентов и врачей, обучающихся по программам ультразвукового исследования сосудов.

Купить книгу "Основы ультразвукового исследования сосудов" - В. П. Куликов

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Название и адрес медицинского центра

_______________________________________________________

Ультразвуковое исследование

Контрон СИГМА 210, ирис. Электронные линейный датчик 7,5 МГц и конвексный - 3,5 МГц (название ультразвукового оборудования)

Врач ______________________________________

Пациент __________________________________

Исследование № ____________ от __.__.____

Исследуемый орган______________________


Протокол ультразвукового исследования жёлчного пузыря

(протокол ультразвукового исследования (УЗИ) жёлчного пузыря в патологии)


Жёлчный пузырь размерами 71 х 27 х 25 мм., контуры ровные, чёткие; стенка на всём протяжении хорошо контурирована, однородная, толщиной 2-3 мм., в проекции тела верхней стенки пузыря изоэхогенное неподвижное образование диаметром 4 мм; в проекции слизистой нижней стенки тела два неподвижные образования размерами 8 х 7 мм и диаметром 4 мм, изоэхогенные, недающие акустических теней содержимое пузыря анэхогенное, однородное.

Заключение

Эхографические признаки полипов желчного пузыря.

Ультразвуковая диагностика не является основным методом и требует подтверждения диагноза другими методами обследования.


Подпись__________________________

Все протоколы УЗИ патология и норма

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине shopdon.ru

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине  shopdon.ru

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине shopdon.ru

Книга "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Купить книгу "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Фундаментальное клиническое руководство подготовлено коллективом ведущих специалистов ультразвуковой диагностики. В книге представлены разделы, посвященные ультразвуковым диагностическим системам, физическим принципам ультразвуковой диагностики, ультразвуковой диагностике заболеваний печени, желчевыводящей системы, поджелудочной железы, пищевода, желудка, кишечника, селезенки, почек, мочевого пузыря, предстательной железы и семенных пузырьков, надпочечников, органов мошонки, лимфатической системы, молочных, щитовидной, околощитовидных и слюнных желез, органов грудной клетки.
Книга предназначена для врачей ультразвуковой диагностики, рентгенологов, радиологов, терапевтов, гастроэнтерологов, эндокринологов, хирургов, урологов, и всех заинтересованных специалистов.

Купить книгу "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Книга "Эхография в гинекологии" - Озерская И. А.

Купить книгу "Эхография в гинекологии" - Озерская И. А.

В 3 издании монографии «Эхография в гинекологии» рассмотрены все основные вопросы ультразвуковой диагностики в гинекологии, с которыми ежедневно сталкивается врач, обследующий органы малого таза у женщин в амбулаторной практике и гинекологическом стационаре. Внесены дополнения результатов собственных научных исследований, а также опыта работы ведущих лабораторий мира и нашей страны за последнее время. Особое внимание уделено вопросам стандартизации при обследовании миометрия, эндометрия и яичников, основанных на рекомендациях групп международных экспертов. Написаны новые главы, посвященные послеродовому периоду в норме и при осложнениях, ультразвуковому мониторингу при проведении аборта как медикаментозного, так и путем вакуум-аспирации, а также послеабортным и послеоперационным осложнениям, включая проблему рубца на матке.
Каждая глава состоит из небольшого этио-патогенетического раздела, подробно освещены вопросы эхографической диагностики, включая данные цветового картирования, допплерометрии, новых, недостаточно распространённых методик и дифференциально-диагностические критерии. Каждая глава иллюстрирована большим количеством эхограмм как типичного, так и нетипичного изображения рассматриваемой патологии. Определены диагностические возможности эхографии, цветового картирования и допплерометрии во всех рассматриваемых разделах гинекологии. Представлены новые направления диагностики и лечения, внедряемые в гинекологическую практику в течение последних лет. В приложение включены таблицы всех нормативных параметров, предложены протоколы ультразвукового исследования органов малого таза и проведения эхогистеросальпингоскопии.
Книга рассчитана на врачей ультразвуковой диагностики, гинекологов, акушеров, онкогинекологов, хирургов и врачей смежных специальностей.

Купить книгу "Эхография в гинекологии" - Озерская И. А.

Книга "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Купить книгу "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Данное издание представляет собой практическое руководство по эхокардиографии, в котором отражены все современные технологии, применяемые в настоящее время. Исключительный интерес для специалистов представляет CD-ROM с подборкой видеоклипов по всем основным разделам, включающих редкие случаи диагностики.

Особенность издания - попытка объединить и сравнить результаты эхокардиографического исследования сердца и паталогоанатомический материал по всем основным разделам.
Большой интерес представляют разделы, содержащие новые технологии исследования, такие как трех- и четырехмерная реконструкция сердца в реальном времени, тканевая допплерография. Большое внимание уделено также классическим разделам эхокардиографии – оценке легочной гипертензии, клапанных пороков сердца, ишемической болезни сердца и ее осложнений и т.д.

В книге представлены огромный иллюстративный материал, большое количество схем и рисунков, приведены алгоритмы тактики проведения исследования и диагностики по всем разделам эхоКГ.
Руководство помогает разрешить спорные и злободневные вопросы, позволяет ориентироваться в расчетах и измерениях, содержит необходимую справочную информацию.
Книга написана сотрудниками кафедры ультразвуковой диагностики ГБОУ ДПО «Российская медицинская академия последипломного образования'' Министерства здравоохранения Российской Федерации» (база – ГКБ им. С.П. Боткина, Москва).

Издание предназначено для специалистов эхокардиографии, врачей ультразвуковой и функциональной диагностики, кардиологов и терапевтов.

Купить книгу "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Книга "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Купить книгу "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Данное издание является наиболее полным иллюстрированным руководством по ультразвуковой диагностике в акушерстве и гинекологии.

Авторы постарались охватить все известные на сегодняшний день режимы УЗИ, но тем не менее основной акцент делается на наиболее доступных методиках, технике, глубоком анализе результатов. Результаты ультразвуковых исследований приводятся в тесной корреляции с клиническими и лабораторными данными, что значительно повышает ценность диагностической информации и формирует у врача клиническое мышление. Первый том посвящен УЗИ в акушерстве.

Рассматриваются ультразвуковые параметры матери и плода на разных сроках гестации, различные варианты патологии беременности.

Отдельные главы посвящены ультразвуковой допплерографии и трехмерному УЗИ в режиме реального времени, ультразвуковой поддержке инвазивных диагностических и лечебных процедур. В приложении дается подробная справочная фетометрическая информация.

Книга предназначена для акушеров-гинекологов, специалистов по ультразвуковой диагностике женских консультаций и акушерских стационаров, студентов медицинских вузов и факультетов.

Купить книгу "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Книга "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Купить книгу "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Данное издание является наиболее полным иллюстрированным руководством по ультразвуковой диагностике в акушерстве и гинекологии. Авторы постарались охватить все известные на сегодняшний день режимы УЗИ, но тем не менее основной акцент делается на наиболее доступных методиках, технике, глубоком анализе результатов. Результаты ультразвуковых исследований приводятся в тесной корреляции с клиническими и лабораторными данными, что значительно повышает ценность диагностической информации и формирует у врача клиническое мышление.

Второй том посвящен проблемам ультразвуковых исследований в гинекологической практике: УЗ-анатомии здоровой женщины, порокам развития и заболеваниям женского полового тракта. Отдельные главы посвящены трансвагинальному и трансректальному методам исследования, а также УЗИ молочных желез.

Книга предназначена для акушеров-гинекологов, специалистов по ультразвуковой диагностике женских консультаций и акушерских стационаров, студентов медицинских вузов и факультетов.

Купить книгу "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Книга "Основы ультразвукового исследования сосудов" - В. П. Куликов

Купить книгу "Основы ультразвукового исследования сосудов" - В. П. Куликов

Руководство «Основы ультразвукового исследования сосудов» предназначено для тех, кто хотел бы получить по возможности краткую, но достаточно полную и главное практически полезную информацию по ультразвуковой диагностике сосудистой патологии. Автор, профессор Куликов Владимир Павлович, известен специалистам по первой в России книге, посвященной дуплексному сканированию сосудов, и руководству для врачей по ультразвуковой диагностике сосудистых заболеваний.
В Руководстве представлены важнейшие сведения о технике исследования, ультразвуковых критериях нормы и патологии кровеносных сосудов, основанные на международных согласительных документах и практическом опыте работы автора. Особое внимание уделено стандартизации техники, объема и терминологии описания ультразвукового исследования сосудов.
Книга предназначена для врачей ультразвуковой и функциональной диагностики, сосудистых хирургов, неврологов и кардиологов, а так же для студентов и врачей, обучающихся по программам ультразвукового исследования сосудов.

Купить книгу "Основы ультразвукового исследования сосудов" - В. П. Куликов

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

Все лекции для врачей удобным списком

Название и адрес медицинского центра

_______________________________________________________

Ультразвуковое исследование

Контрон СИГМА 210, ирис. Электронные линейный датчик 7,5 МГц и конвексный - 3,5 МГц

(название ультразвукового оборудования)

Врач ______________________________________

Пациент __________________________________

Исследование № ____________ от __.__.____

Исследуемый орган______________________


Протокол ультразвукового исследования поджелудочной железы

(УЗИ шаблон (пример, бланк) протокола ультразвукового описания поджелудочной железы)

Поджелудочная железа - формы и расположения, имеет чёткие ровные контуры, толщина головки 23 мм., тела — 14 мм, хвоста – 28 мм., эхоструктура однородная, гипоизоэхогенная, рисунок зернистости умеренно выражен, главный панкреатический проток не расширен, просвет его свободен.

Регионарные лимфатические узлы не визуализируются.

Заключение

Эхоструктурных изменений поджелудочной железы не выявлено.


Ультразвуковая диагностика не является основным методом и требует подтверждения диагноза другими методами обследования.


Подпись__________________________



Все протоколы УЗИ патология и норма

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине shopdon.ru

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине  shopdon.ru

Купить профессиональную медицинскую литературу по УЗИ диагностике в интернет-магазине shopdon.ru

Книга "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Купить книгу "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Фундаментальное клиническое руководство подготовлено коллективом ведущих специалистов ультразвуковой диагностики. В книге представлены разделы, посвященные ультразвуковым диагностическим системам, физическим принципам ультразвуковой диагностики, ультразвуковой диагностике заболеваний печени, желчевыводящей системы, поджелудочной железы, пищевода, желудка, кишечника, селезенки, почек, мочевого пузыря, предстательной железы и семенных пузырьков, надпочечников, органов мошонки, лимфатической системы, молочных, щитовидной, околощитовидных и слюнных желез, органов грудной клетки.
Книга предназначена для врачей ультразвуковой диагностики, рентгенологов, радиологов, терапевтов, гастроэнтерологов, эндокринологов, хирургов, урологов, и всех заинтересованных специалистов.

Купить книгу "Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика" - В. В. Митьков

Книга "Эхография в гинекологии" - Озерская И. А.

Купить книгу "Эхография в гинекологии" - Озерская И. А.

В 3 издании монографии «Эхография в гинекологии» рассмотрены все основные вопросы ультразвуковой диагностики в гинекологии, с которыми ежедневно сталкивается врач, обследующий органы малого таза у женщин в амбулаторной практике и гинекологическом стационаре. Внесены дополнения результатов собственных научных исследований, а также опыта работы ведущих лабораторий мира и нашей страны за последнее время. Особое внимание уделено вопросам стандартизации при обследовании миометрия, эндометрия и яичников, основанных на рекомендациях групп международных экспертов. Написаны новые главы, посвященные послеродовому периоду в норме и при осложнениях, ультразвуковому мониторингу при проведении аборта как медикаментозного, так и путем вакуум-аспирации, а также послеабортным и послеоперационным осложнениям, включая проблему рубца на матке.
Каждая глава состоит из небольшого этио-патогенетического раздела, подробно освещены вопросы эхографической диагностики, включая данные цветового картирования, допплерометрии, новых, недостаточно распространённых методик и дифференциально-диагностические критерии. Каждая глава иллюстрирована большим количеством эхограмм как типичного, так и нетипичного изображения рассматриваемой патологии. Определены диагностические возможности эхографии, цветового картирования и допплерометрии во всех рассматриваемых разделах гинекологии. Представлены новые направления диагностики и лечения, внедряемые в гинекологическую практику в течение последних лет. В приложение включены таблицы всех нормативных параметров, предложены протоколы ультразвукового исследования органов малого таза и проведения эхогистеросальпингоскопии.
Книга рассчитана на врачей ультразвуковой диагностики, гинекологов, акушеров, онкогинекологов, хирургов и врачей смежных специальностей.

Купить книгу "Эхография в гинекологии" - Озерская И. А.

Книга "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Купить книгу "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Данное издание представляет собой практическое руководство по эхокардиографии, в котором отражены все современные технологии, применяемые в настоящее время. Исключительный интерес для специалистов представляет CD-ROM с подборкой видеоклипов по всем основным разделам, включающих редкие случаи диагностики.

Особенность издания - попытка объединить и сравнить результаты эхокардиографического исследования сердца и паталогоанатомический материал по всем основным разделам.
Большой интерес представляют разделы, содержащие новые технологии исследования, такие как трех- и четырехмерная реконструкция сердца в реальном времени, тканевая допплерография. Большое внимание уделено также классическим разделам эхокардиографии – оценке легочной гипертензии, клапанных пороков сердца, ишемической болезни сердца и ее осложнений и т.д.

В книге представлены огромный иллюстративный материал, большое количество схем и рисунков, приведены алгоритмы тактики проведения исследования и диагностики по всем разделам эхоКГ.
Руководство помогает разрешить спорные и злободневные вопросы, позволяет ориентироваться в расчетах и измерениях, содержит необходимую справочную информацию.
Книга написана сотрудниками кафедры ультразвуковой диагностики ГБОУ ДПО «Российская медицинская академия последипломного образования'' Министерства здравоохранения Российской Федерации» (база – ГКБ им. С.П. Боткина, Москва).

Издание предназначено для специалистов эхокардиографии, врачей ультразвуковой и функциональной диагностики, кардиологов и терапевтов.

Купить книгу "Эхокардиография от Рыбаковой" - М. К. Рыбакова, В. В. Митьков

Книга "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Купить книгу "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Данное издание является наиболее полным иллюстрированным руководством по ультразвуковой диагностике в акушерстве и гинекологии.

Авторы постарались охватить все известные на сегодняшний день режимы УЗИ, но тем не менее основной акцент делается на наиболее доступных методиках, технике, глубоком анализе результатов. Результаты ультразвуковых исследований приводятся в тесной корреляции с клиническими и лабораторными данными, что значительно повышает ценность диагностической информации и формирует у врача клиническое мышление. Первый том посвящен УЗИ в акушерстве.

Рассматриваются ультразвуковые параметры матери и плода на разных сроках гестации, различные варианты патологии беременности.

Отдельные главы посвящены ультразвуковой допплерографии и трехмерному УЗИ в режиме реального времени, ультразвуковой поддержке инвазивных диагностических и лечебных процедур. В приложении дается подробная справочная фетометрическая информация.

Книга предназначена для акушеров-гинекологов, специалистов по ультразвуковой диагностике женских консультаций и акушерских стационаров, студентов медицинских вузов и факультетов.

Купить книгу "УЗИ в акушерстве и гинекологии. Том 1 Акушерство" - Мерц Эберхард

Книга "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Купить книгу "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Данное издание является наиболее полным иллюстрированным руководством по ультразвуковой диагностике в акушерстве и гинекологии. Авторы постарались охватить все известные на сегодняшний день режимы УЗИ, но тем не менее основной акцент делается на наиболее доступных методиках, технике, глубоком анализе результатов. Результаты ультразвуковых исследований приводятся в тесной корреляции с клиническими и лабораторными данными, что значительно повышает ценность диагностической информации и формирует у врача клиническое мышление.

Второй том посвящен проблемам ультразвуковых исследований в гинекологической практике: УЗ-анатомии здоровой женщины, порокам развития и заболеваниям женского полового тракта. Отдельные главы посвящены трансвагинальному и трансректальному методам исследования, а также УЗИ молочных желез.

Книга предназначена для акушеров-гинекологов, специалистов по ультразвуковой диагностике женских консультаций и акушерских стационаров, студентов медицинских вузов и факультетов.

Купить книгу "Ультразвуковая диагностика в акушерстве и гинекологии: в 2 томах. Том 2. Гинекология" - Мерц Эберхард

Книга "Основы ультразвукового исследования сосудов" - В. П. Куликов

Купить книгу "Основы ультразвукового исследования сосудов" - В. П. Куликов

Руководство «Основы ультразвукового исследования сосудов» предназначено для тех, кто хотел бы получить по возможности краткую, но достаточно полную и главное практически полезную информацию по ультразвуковой диагностике сосудистой патологии. Автор, профессор Куликов Владимир Павлович, известен специалистам по первой в России книге, посвященной дуплексному сканированию сосудов, и руководству для врачей по ультразвуковой диагностике сосудистых заболеваний.
В Руководстве представлены важнейшие сведения о технике исследования, ультразвуковых критериях нормы и патологии кровеносных сосудов, основанные на международных согласительных документах и практическом опыте работы автора. Особое внимание уделено стандартизации техники, объема и терминологии описания ультразвукового исследования сосудов.
Книга предназначена для врачей ультразвуковой и функциональной диагностики, сосудистых хирургов, неврологов и кардиологов, а так же для студентов и врачей, обучающихся по программам ультразвукового исследования сосудов.

Купить книгу "Основы ультразвукового исследования сосудов" - В. П. Куликов

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком