Лекция для врачей "Дыхательная недостаточность. Обструктивный и рестриктивный синдромы" (отрывок из книги "Спирометрия руководство для врачей" - Стручков П. В.)
Основы физиологии и патофизиологии внешнего дыхания. Обструктивный и рестриктивный синдромы
Дыхание — это совокупность процессов, обеспечивающих поглощение кислорода организмом, его использование в окислении органических веществ и выведение избытка углекислого газа. У человека в обычных условиях основной источник энергии клеток — аэробный обмен, связанный с потреблением кислорода.
Процесс дыхания у человека можно разделить на три этапа.
Первый этап — внешнее, или легочное, дыхание. Это совокупность процессов, проходящих в легких и включающих в себя вентиляцию и легочный газообмен. Вентиляция представляет собой обмен газов между атмосферой и альвеолярным пространством. Легочный газообмен — обмен газов через альвеолярно-капиллярную мембрану. Этот процесс происходит по законам диффузии по градиенту концентрации (парциального давления) газов: кислород из альвеолярного пространства поступает в кровь легочных капилляров (в альвеолах парциальное давление кислорода около 100 мм рт. ст., в притекающей крови легочных капилляров — около 46 мм рт. ст. По градиенту парциального давления кислород идет из альвеол в кровь). В обратном направлении углекислый газ выходит из крови легочных капилляров (где его давление в притекающей крови составляет около 46 мм рт. ст.) в альвеолярное пространство, где его давление около 40 мм рт. ст.). В итоге притекающая к альвеолам венозная кровь становится артериальной. Таким образом, итогом внешнего (легочного) дыхания является артериализация крови.
Второй этап дыхания представляет собой транспорт газов (кислорода и углекислого газа) кровью от легких ко всем органам организма.
Третий этап — тканевое дыхание — совокупность процессов поглощения кислорода клеткой и выделение СО2.
Строение органов дыхания
Верхние дыхательные пути включают носовую полость, носоглотку, глотку и гортань. Основное назначение верхних дыхательных путей — подготовка воздуха к газообмену в альвеолах. Здесь происходят очистка воздуха от крупных взвешенных в воздухе примесей, согревание, увлажнение воздуха, частично очистка от бактерий и вирусов. Очистка продолжается и далее в кондуктивной и смешанной зонах дыхательных путей.
Нижние дыхательные пути включают трахею и бронхи. Трахея представлена незамкнутыми хрящевыми кольцами. Плотная основа стенки трахеи представлена 16 - 20 дугами из гиалинового хряща, а задняя часть —соединительнотканной мембраной, которая позволяет беспрепятственно проходить пищевому комку через пищевод, находящийся позади трахеи. Изнутри трахея выстлана эпителием, содержащим бокаловидные клетки, выделяющие секрет в просвет трахеи. Трахея делится на два главных бронха, идущих, соответственно, к правому и левому легкому.
Классическая схема Э. Вейбеля (Weibel E.R., 1963) предполагает 23 генерации бронхов (рис. 3). Бронхи от 1-й до 16-й генерации составляют проводящую (кондуктивную) зону. В ней не происходит газообмена, поскольку в ней нет альвеол, но в ней происходит подготовка воздуха к газообмену. Эта зона в совокупности с трахеей и верхними дыхательными путями составляет анатомическое мертвое пространство (т.е. объем, который не участвует в газообмене). Начиная с 17-й генерации появляются единичные альвеолы. Количество их нарастает в дистальном направлении. Это переходная зона, здесь уже начинается газообмен. А дистальные — дыхательные бронхиолы заканчиваются альвеолярными ходами, со стенками, образованными исключительно альвеолами. Отделы легкого, содержащие альвеолы и участвующие в газообмене, называются дыхательной или респираторной зоной. Общий объем респираторной зоны у взрослого человека составляет в среднем около 3000 мл. Общее количество альвеол у человека — около 500 млн (по разным данным от 300 до 700 млн), а их суммарная площадь составляет около 40-120 м2.
В крупных бронхах слизистая оболочка представлена реснитчатым эпителием (рис. 4), между реснитчатыми клетками располагаются бокаловидные клетки, продуцирующие секрет. Соотношение реснитчатых и бокаловидных клеток в норме примерно 5:1-10:1. На поверхности клеток находится слизь, включающая более жидкий внутренний (золь) и более плотный наружный (гель) слои. В подслизистой оболочке расположены многоклеточные железы, мышечные клетки и гиалиновые хрящи, составляющие каркас стенки бронха. Однонаправленное движение ресничек (на каждой реснитчатой клетке содержится около 20 ресничек, которые осуществляют биение с частотой до 1000 в минуту) продвигает осевшие патогенные субстанции в проксимальном направлении. Реснитчатый эпителий в совокупности с одноклеточными железами (бокаловидными клетками) и многоклеточными железами в подслизистой оболочке стенки бронхов составляют основу мукоцилиарного аппарата — главного механизма очистки воздуха и его подготовки к газообмену. По мере продвижения от крупных к мелким бронхам количество хрящевой ткани уменьшается: от колец и полуколец в проксимальных бронхах до островков хрящевой ткани в дистальных бронхах, в дистальном направлении возрастает количество мышечных волокон. Бронхи диаметром менее 2 мм (начиная с 11-й генерации), лишенные хрящевого скелета, могут менять свой просвет и полностью спадаться при повышении внутригрудного давления при выдохе, особенно при форсированном выдохе (экспираторный коллапс мелких бронхов).
Рис. 3. Схема дихотомического деления бронхиального дерева по E.R. Weibel
В правом столбце: 0... 23 — генерации бронхов.
Рис. 4. Схема строения стенок воздухоносных путей (обработано из)
Они находятся в раскрытом состоянии за счет растягивающей силы рядом расположенных альвеол, каждая из которых стремится уменьшить свой диаметр и прикладывает растягивающую силу к стенке мелких бронхов. При уменьшении эластической тяги (например, при эмфиземе легких) на вдохе происходит увеличение просвета бронхов, а на выдохе, особенно форсированном, эластическая сила недостаточна, чтобы сохранить просвет бронхов, происходит значительное уменьшение их просвета (экспираторное сужение) или даже полный экспираторный коллапс. Таким образом, при эмфиземе мелкие бронхи выполняют роль своеобразного клапана, способствующего «нагнетанию» воздуха в легкие и увеличению их объема.
В альвеолах стенка представлена альвеолоцитами, базальной мембраной и эндотелиоцитами.
Легкие располагаются в грудной клетке. Грудная клетка изнутри выстлана париетальной плеврой. Легочная ткань снаружи выстлана висцеральной плеврой. Между париетальной и висцеральной плеврой находится плевральная щель, содержащая небольшое количество (1-2 мл) плевральной жидкости, выполняющую роль смазки, уменьшающей трение листков плевры друг о друга при дыхании. Давление в плевральной полости отрицательное (т.е. меньше атмосферного и составляет около —10 см вод. ст. в верхних отделах и около —2 см вод. ст. в нижних отделах легкого при вертикальном положении тела). В правом легком выделяют три доли, в левом — две.
Структурно-функциональной единицей легкого является ацинус. Ацинус представляет собой разветвление терминальной бронхиолы (которая делится на респираторные бронхиолы 2 и 3-го порядка и альвеолярные ходы, последние заканчиваются альвеолярными мешочками) с опутывающими альвеолы капиллярами малого круга кровообращения. Ацинус — функциональная единица респираторной зоны легкого, где происходит газообмен. У человека в среднем на один альвеолярный ход (конечная часть респираторной бронхиолы) приходится 21 альвеола.
Функциональная система дыхания включает следующие компоненты: альвеолярный аппарат, воздухопроводящие пути, костно-мышечный аппарат и плевру, дыхательную мускулатуру, малый круг кровообращения, нейрогуморальный аппарат регуляции. Центральная нервная система осуществляет регуляцию дыхания. Система регуляции дыхания многоуровневая. Нижний уровень — дыхательный центр, расположенный на уровне продолговатого мозга на дне 4-го желудочка. Высший уровень регуляции — кора больших полушарий. Дыхание — одна из немногих физиологических функций, подверженных волевой регуляции. Грудная клетка и дыхательная мускулатура — орган, обеспечивающий дыхательный акт. Основной дыхательной мышцей является диафрагма, дополнительными — мышцы межреберные и мышцы шеи. Следующий компонент — воздухопроводящие пути, которые доставляют воздух до респираторной зоны и осуществляют подготовку воздуха к газообмену (согревание, увлажнение, очистка от примесей, бактерий и вирусов). Совокупность альвеол составляет респираторную зону легких, в которой происходит газообмен. Малый круг кровообращения осуществляет приток венозной крови к альвеолам и отток от них артериальной крови.
Акт дыхания. Вдох является активным актом, происходящим за счет сокращения дыхательной мускулатуры. Основной дыхательной мышцей является диафрагма, дополнительную роль выполняют межреберные мышцы. Вспомогательные дыхательные мышцы, которые включаются при углубленном дыхании, — мышцы шеи и верхнего плечевого пояса. Выдох при спокойном дыхании — пассивный, происходит за счет расслабления дыхательных мышц и сокращения растянутых на вдохе эластических структур аппарата дыхания. При углубленном дыхании выдох становится активным за счет подключения экспираторной мускулатуры.
Работа дыхательной мускулатуры приводит к уменьшению плеврального давления на вдохе и растяжению легких, альвеолярное давление становится меньше атмосферного, и воздух из атмосферы поступает в альвеолы. На выдохе плевральное давление увеличивается (становится менее отрицательным), альвеолярное давление увеличивается, и воздух выходит из альвеол в атмосферу.
Механизмы газообмена в легких
По мере продвижения от проксимальных к дистальным бронхам резко увеличивается их суммарный просвет: от 2,5 см2 на уровне трахеи до нескольких сотен см2 на уровне бронхиол и до 11 800 см2 на уровне альвеолярных мешочков. Это приводит к тому, что при вдохе воздух проходит по проксимальному участку бронхов (примерно до 16-й генерации) с достаточно большой скоростью по механизму конвективного переноса. Однако далее линейная скорость движения воздуха резко падает. Поэтому на уровне дистальных бронхов и бронхиол основным механизмом вентиляции является диффузия газов по градиенту их концентрации (кислорода в дистальном направлении, углекислого газа в обратном направлении). Из-за резкого падения скорости движения воздуха происходит оседание на слизистой оболочке мелких бронхов различных примесей, попавших в дыхательные пути при дыхании.
Таким образом, газообмен по длине воздухоносных путей проходит за счет двух процессов: конвективного переноса воздуха в проксимальных бронхах и за счет диффузии в дистальных. Отсюда понятно, что состав альвеолярного газа практически не меняется от вдоха к выдоху. Постоянство газового состава внутри альвеол является одной из важных физиологических констант организма, определяющих постоянство газового состава артериальной крови.
Эффективное внешнее (легочное) дыхание осуществляется за счет трех взаимосвязанных процессов: вентиляции, капиллярной перфузии на уровне альвеол (при этом должно строго выполняться соотношение объема вентиляции и объема перфузии — вентиляционно-перфузионное соотношение) и диффузии газов через альвеолярно-капиллярную мембрану.
Следует отметить, что диффузия газов будет происходить только в тех альвеолах, которые перфузируются кровью. Поэтому одной из причин снижения диффузионной способности легких может стать несоответствие вентиляции и кровотока в легких.
Дыхательная недостаточность
Понятие дыхательной недостаточности (ДН) — одно из центральных понятий физиологии и патофизиологии дыхания. Наиболее полное и глубокое понимание понятия ДН приводится в работах Л. Л. Шика и Н. Н. Канаева. Они предлагали выделять два понятия: недостаточность функции внешнего дыхания (ФВД) и недостаточность системы дыхания.
Недостаточность ФВД предполагает неполноценное выполнение основной функции — артериализации крови. Основным критерием недостаточности ФВД является артериальная гипоксемия (недостаток О2 в артериальной крови) при возможной гиперкапнии (повышении содержания СО2 в артериальной крови). Недостаточность системы внешнего дыхания предполагает не только несостоятельность выполнения указанной функции артериализации крови, но и возможное ее сохранение за счет напряжения компенсаторноприспособительных механизмов, что ограничивает функциональные резервы системы.
Таким образом, ДН — это недостаточность внешнего дыхания, при которой не обеспечивается нормальный газовый состав артериальной крови или он достигается за счет включения компенсаторных механизмов, что приводит к снижению функциональных возможностей организма. Это определение было принято на 15-м съезде терапевтов в 1964 г.
Вторая точка зрения, распространенная в западной школе, заключается в рассмотрении ДН как неспособности аппарата дыхания обеспечить нормальный газовый состав артериальной крови. В настоящее время в России доминирует именно эта точка зрения на ДН. При этом снижается рО2, а иногда и повышается рСО2 (в некоторых случаях при ДН артериальная гипоксемия может сопровождаться не гиперкапнией, а нормокапнией и даже гипокапнией при гипервентиляции).
Классификация ДН по скорости развития:
• острая — развивается в течение времени от нескольких минут до нескольких дней. Она ассоциирована с гипоксемией и респираторным ацидозом или алкалозом. Это непосредственно жизнеугрожающее состояние. Примеры: ДН при астматическим статусе, тяжелой пневмонии, ТЭЛА, респираторном дистресс-синдроме взрослых;
• хроническая — развивается в течение многих месяцев и лет. Ассоциирована с гипоксемией и/или гиперкапнией. Это потенциально жизнеугрожающее состояние. Пример — ДН при ХОБЛ;
• обострение хронической ДН, например утяжеление проявлений хронической ДН у больного ХОБЛ при обострении заболевания.
Механизмами компенсации ДН могут быть: гипервентиляция легких, тахикардия и увеличение минутного объема сердца, вторичный эритроцитоз при хронической ДН, смещение кривой диссоциации оксигемоглобина вправо (за счет повышения содержания 2,3-дифосфоглицерата в эритроцитах, что приводит к увеличению отдачи О2 в тканях), повышение давления в легочной артерии (что приводит к включению в кровообращение большей части сосудов малого круга кровообращения).
По степени компенсации ДН может быть компенсированной, декомпенсированной и скрытой. При компенсированной ДН газовый состав крови еще не нарушен, но уже включены компенсаторные механизмы. При декомпенсированной ДН газовый состав артериальной крови нарушен даже в покое. При скрытой ДН газовый состав артериальной крови в покое еще нормальный, но нарушается при физической нагрузке.
Можно также представить два вида ДН по механизмам ее развития:
• Легочная (паренхиматозная) ДН связана с первичным поражением респираторной зоны легких, когда нарушается оксигенация крови (развивается артериальная гипоксемия), но за счет активизации дыхательного центра может развиваться гипервентиляция легких, приводящая к гипокапнии (конкретная величина рСО2 в артериальной крови будет определяться конкретным соотношением объема вентиляции и объемом кровотока в разных участках легких).
• Насосная ДН связана с нарушением механизма вентиляции: угнетением дыхательного центра, слабостью дыхательной мускулатуры, поражением грудной клетки (травма, деформация). При этом всегда развивается альвеолярная гиповентиляция, сопровождающаяся как гипоксемией, так и гиперкапнией. При заболеваниях органов дыхания нередко сочетаются различные механизмы.
В соответствии с основными компонентами системы дыхания ДН могут вызвать следующие причины (по Л. Л. Шик, Н. Н. Канаев):
• поражение бронхов и респираторного отдела легких: нарушение бронхиальной проходимости, инфильтрация легочной ткани, пневмосклероз, деструктивные процессы в легких, резекция легкого, ателектаз;
• поражение костно-мышечного каркаса грудной клетки и плевры, дыхательной мускулатуры: ограничение подвижности ребер, искривление позвоночника, плевральные сращения, слабость дыхательных мышц;
• нарушение регуляции дыхания (угнетение дыхательного центра, дыхательные неврозы, нарушения местных регуляторных отношений;
• нарушения кровообращения в малом круге: редукция сосудистого русла (эмболии), спазм, застой крови.
По механизмам развития недостаточность внешнего дыхания может быть связана с нарушением вентиляции альвеол — вентиляционная недостаточность (обструктивного, рестриктивного и смешанного типа, о чем будет сказано ниже), нарушением соотношения вентиляции и кровотока на уровне альвеол, нарушением диффузии газов через альвеолярно-капиллярную мембрану.
Вентиляция альвеол может быть полноценной при выполнении двух основных условий: 1) свободном прохождении воздуха по верхним дыхательным путям, трахее и бронхиальному дереву, 2) наличии достаточного объема альвеолярного пространства и способности альвеол изменять свой объем при дыхании, обеспечивая достаточную площадь легочного газообмена.
Соответственно выделяют два основных типа нарушения вентиляции:
• обструктивный, связанный с нарушением прохождения воздуха по верхним и нижним дыхательным путям (при этом обструкция может быть выражена в большей степени на выдохе, как это имеет место при эмфиземе легких, когда воздух может свободно поступать в альвеолы на вдохе, но с затруднением выходить на выдохе за счет экспираторного сужения или даже экспираторного коллапса мелких бронхов, лишенных хрящевого скелета);
• рестриктивный тип может быть связан с уменьшением объема функционирующей легочной паренхимы, инфильтрацией легких, ателектазом, нарушением расправления легких при пневмосклерозе, наличием плевральных спаек или застоем крови в легких, он возможен при ограничении подвижности диафрагмы и слабости дыхательной мускулатуры.
Как правило, при разных заболеваниях легких имеет место смешанный вариант вентиляционной недостаточности с сочетанием и обструктивных, и рестриктивных нарушений.
Основными механизмами бронхообструктивного синдрома могут быть следующие: спазм гладкой мускулатуры бронхов, воспалительная инфильтрация и отек слизистой бронхов, увеличение количества вязкого секрета в бронхах, деформация бронхов, опухоли бронха, инородные тела и др., экспираторный коллапс мелких бронхов (бронхов диаметром менее 2 мм, не имеющих хрящевого скелета, лишенных «эластической поддержки»).
При ХОБЛ, как указано выше, механизм обструкции связан с поражением дистальных отделов бронхиального дерева и альвеол. По мере прогрессирования хронического бронхита процесс затрагивает более проксимальные отделы бронхов, где расположены кашлевые рецепторы. Только после этого возникает столь типичный симптом хронического бронхита (курильщика), как продуктивный кашель. Раннее течение ХОБЛ проходит практически без клинических проявлений. При бронхиальной астме реализация обструкции происходит на уровне более проксимально расположенных воздухоносных путей, где развита мышечная оболочка (бронхоспазм — типичный механизм развития астматического приступа). Но возможно первичное поражение респираторной зоны легких при сохранении интактных дыхательных путей. Это может реализоваться при некоторых профессионально обусловленных заболеваниях, в частности при бериллиозе, инфильтративных заболеваний легких и др. Тогда даже тяжелые проявления ДН с выраженной одышкой могут протекать без бронхиальной обструкции, при нормальных спирометрических показателях.
Дыхательная недостаточность
Причинами рестриктивных нарушений могут быть как заболевания легких, сопровождающиеся уменьшением объема функционирующей паренхимы, так и заболевания плевры или нарушения со стороны грудной клетки, при которых нарушается нормальная дыхательная экскурсия легких. Кроме того, к рестрикции могут привести поражение дыхательной мускулатуры, увеличение объема брюшной полости, что приводит к ограничению подвижности диафрагмы, а также застой крови в легких при левожелудочковой недостаточности.
Следует еще раз подчеркнуть, что главным признаком клинически выраженной дыхательной недостаточности является артериальная гипоксемия (уменьшение раО2). При этом уровень раСО2 может быть разным: нередко он снижается при компенсаторной гипервентиляции, или повышается, когда альвеолярная гипервентиляция не выражена, либо в легких преобладают зоны с гиповентиляцией.
Основными причинами артериальной гипоксемии являются:
• альвеолярная гиповентиляция,
• нарушение распределения вентиляции и кровотока в легких,
• увеличение шунтирования крови в легких,
• нарушение диффузии кислорода через альвеолярно-капиллярную мембрану.
Вы читали отрывок из книги "Спирометрия руководство для врачей" - Стручков П. В.
Книга "Спирометрия руководство для врачей"
Автор: Стручков П. В., Дроздов Д. В., Лукина О. Ф.
В практическом руководстве отражены современные представления об объеме и правилах проведения и интерпретации рутинного клинического исследования функции внешнего дыхания. Приведены необходимые в работе практикующего врача сведения по анатомии и физиологии дыхательной системы. Детально описана методика проведения спирометрии, бронходилатационных и бронхоконстрикторных проб у взрослых пациентов и у детей, разобраны типичные ошибки проведения этих исследований.
Даны примеры формулирования заключений по исследованиям на основании международно признанных рекомендаций ATS/ERS (2005), включены сведения о системе должных величин GLI-2012. В третьем издании учтены требования стандартов ATS/ERS (2019). Особое внимание уделено качеству выполнения спирометрии и правильной оценке ее результатов. Издание предназначено врачам отделений функциональной диагностики, врачам-пульмонологам, анестезиологам, студентам медицинских и технических вузов.
Может быть полезно специалистам по обслуживанию медицинской техники.
Содержание книги "Спирометрия руководство для врачей" - Стручков П. В.
1. История изучения показателей внешнего дыхания
2. Основы физиологии и патофизиологии внешнего дыхания. Обструктивный и рестриктивный синдромы
2.1. Строение органов дыхания
2.2. Механизмы газообмена в легких
2.3. Дыхательная недостаточность
3. Легочные пробы и емкости. Оценка ФОЕ методом разведения гелия
4. Показатели легочной вентиляции: ЧД, МОД, МАВ, проба ФЖЕЛ, МВЛ. Понятие о поглощении кислорода и эффективности вентиляции
4.1. Понятие мертвого пространства
4.2. Проба ФЖЕЛ
4.3. Проба максимальной вентиляции легких
4.4. Потребление кислорода и оценка эффективности вентиляции
5. Кривая поток-объем форсированного выдоха, основные показатели
6. Тест с форсированным вдохом. Подходы к выявлению обструкции верхних дыхательных путей
7. Технические аспекты спирометрии
7.1. Основные типы спирометров
7.2. Требования к спирометрам
7.3. Калибровка
7.4. Коррекция результатов измерений
8. Подготовка к исследованиям и обслуживание спирометрической аппаратуры
9. Методика проведения спирометрии. Маневры ЖЕЛ и ФЖЕЛ
10. Должные величины
11. Оценка спирометрических показателей и построение заключения по спирометрическому исследованию на основе рекомендаций ATS/ERS (2005)
12. Критерии качества и дефекты спирометрического исследования
13. Бронходилатационные тесты
14. Бронхопровокационные тесты
15. Проведение спирометрии у детей
16. Примеры заключений спирометрических исследований
А. Обозначение основных параметров ФВД