ЭКГ под силу каждому. Лекция №1. Проводящая система сердца. Правильное наложение электродов. Бесплатный курс лекций по ЭКГ. Лекции для врачей
1-й урок бесплатного курса для врачей "ЭКГ под силу каждому" - вводное занятие по ЭКГ. Рассмотрены вопросы по проводящей системе сердца и правильному наложению электродов - очень важные вопросы, без полного понимания которых нет смысла дальше изучать ЭКГ. Лекцию для врачей проводят авторы книги "ЭКГ под силу каждому" врачи-кардиологи Анатолий Щучко, Андрей Щучко,
Дополнительный материал
Проводящая система сердца
Проводящая система сердца — комплекс сложных высокоспециализированных нейромышечных образований, способных к самостоятельной генерации электрических импульсов и осуществляющих координацию деятельности миокарда. Знание особенностей морфологии и физиологии проводящей системы — это ключ к глубокому пониманию всех связанных с ней патологических процессов и разработке наиболее эффективных методов противодействия последним.
Эмбриогенез проводящей системы сердца
На сегодняшний день существует три основных гипотезы развития проводящей системы сердца — концепция колец, концепция рекрутирования и концепция ранней спецификации.
Концепция колец — классическая, признанная большинством исследователей гипотеза формирования проводящей системы. Считается, что клетки определенных областей сердца делятся и развиваются медленнее остальных. В результате скопления этих клеток формируют сужения в виде колец на сердечной трубке, где затем будут располагаться компоненты проводящей системы (рис. 9).
Концепция рекрутирования подразумевает изначальное существование каркаса проводящей системы в развивающемся сердце. Клетки миокарда рядом с каркасом меняют свою структуру и функцию, становясь элементами проводящей системы (рис. 9).
Согласно концепции ранней спецификации, по сути, представляющей комбинацию описанных выше гипотез, разные клетки миокарда с самого начала развития сердца запрограммированы на экспрессию определенных генов. Исходя из этого происходит дифференцировка клеток на составляющие проводящей системы и рабочий миокард.
Рис. 9. Концепция колец, сердечная трубка (слева). Концепция рекрутирования, клетки миокарда преобразуются в проводящие кардиомиоциты рядом с каркасом проводящей системы (справа). ВС — венозный синус, П — предсердия, Ж — желудочки, ПЖК — предсердно-желудочковое кольцо, СПК — синуснопредсердное кольцо
Рис. 9. Концепция колец, сердечная трубка (слева). Концепция рекрутирования, клетки миокарда преобразуются в проводящие кардиомиоциты рядом с каркасом проводящей системы (справа). ВС — венозный синус, П — предсердия, Ж — желудочки, ПЖК — предсердно-желудочковое кольцо, СПК — синусно-предсердное кольцо
Анатомия проводящей системы сердца
Синусно-предсердный узел
Синусно-предсердный узел (лат. nodus sinuatrialis, узел Кисса-Флека, СПУ) является первым звеном проводящей системы сердца. СПУ имеет веретенообразную форму, длину 8-26 мм, ширину 4-13 мм, толщину 1-3 мм и располагается под эпикардом правого предсердия между устьем верхней полой вены и правым ушком в верхней части разделяющей эти образования пограничной борозды. В 10% случаев СПУ подковообразно охватывает кавопредсердное соединение и гребень правого ушка.
Кровоснабжение узла происходит посредством одноименной артерии. Существует несколько морфологических вариантов артерии СПУ. Преимущественно она берет начало от правой коронарной артерии в проксимальном ее отделе до отхождения правой краевой ветви (ветви острого края). В дальнейшем артерия СПУ обходит устье верхней полой вены с левой или правой стороны либо образует вокруг него кольцевидный анастомоз. Иногда артерия ответвляется после отхождения правой краевой ветви и следует по заднебоковой поверхности правого предсердия непосредственно в сторону узла.
В меньшем количестве случаев артерия СПУ отходит в проксимальном или дистальном участке огибающей ветви левой коронарной артерии, следуя между предсердиями или обходя крышу левого предсердия соответственно.
Межузловые пути
Межузловые пути (тракты) проводящей системы сердца всегда являлись объектом дискуссии среди ученых.
Классически существовало представление о трех трактах — переднем (Бахмана), среднем (Венкебаха) и заднем (Тореля). Передний тракт в верхней части межпредсердной перегородки делится на ветви, следующие к предсердно-желудочковому узлу и к левому предсердию.
Результаты многих современных исследований опровергают наличие специализированных проводящих путей в правом предсердии. Не обнаружено однозначных данных о каких-либо морфологических и гистохимических отличиях клеток миокарда правого предсердия, за исключением непосредственно клеток синусно-предсердного и предсердно-желудочковых узлов. Возможно, часть рабочих кардиомиоцитов имеет особые электрофизиологические свойства, что позволяет им передавать импульс между узлами проводящей системы.
Предсердно-желудочковый узел
Для понимания расположения предсердно-желудочкового узла (лат. nodus atrioventricularis, узел Ашоффа—Тавара, ПЖУ) следует рассмотреть важное с хирургической точки зрения образование в правом предсердии — треугольник Коха.
Основанием треугольника Коха служит устье коронарного синуса, сторонами — основание септальной створки трехстворчатого клапана и сухожилие Тодаро. Сухожилие Тодаро — соединившиеся волокна клапанов нижней полой вены (евстахиев клапан) и коронарного синуса (тебезиев клапан), следующие к мембранозной перегородке. Иногда вместо сухожилия Тодаро за одну из стенок треугольника Коха принимается нижний край овальной ямки правого предсердия.
ПЖУ в хирургии проецируют на нижнюю часть ближе к вершине треугольника Коха и к основанию септальной створки трехстворчатого клапана. Точное же морфологическое расположение ПЖУ — задний верхний отросток левого желудочка, задняя и нижняя часть нижней стенки левого желудочка, направляющаяся к плоскости трехстворчатого клапана. Длина ПЖУ 3—15 мм, ширина 1—7 мм, толщина 0,5—2 мм.
Кровоснабжается узел артерией ПЖУ, исходящей из правой коронарной артерии или, реже, из огибающей ветви левой коронарной артерии.
Предсердно-желудочковый пучок
ПЖУ продолжается в предсердно-желудочковый пучок (лат. fasciculus atrioventricu laris, пучок Гиса, ПЖП). ПЖП следует к нижнему краю мембранозной части межжелудочковой перегородки, прободая последнюю, идет вдоль границы мембранозной и мышечной частей и делится на две ветви на уровне некоронарного синуса аорты. Соответственно выделяют пенетрирующую и ветвящуюся части ПЖП.
Ветви предсердно-желудочкового пучка
Ветвящаяся часть ПЖП делится на две основные ветви — правую и левую (лат. crus dextrum, crus sinistrum, правая ножка пучка Гиса, левая ножка пучка Гиса.
Левая основная ветвь вступает в миокард левого желудочка в мышечной части межжелудочковой перегородки и практически сразу разделяется на переднюю и заднюю ветви. Эти ветви идут в направлении передней и задней сосочковых мышц и заканчиваются в миокарде волокнами Пуркинье.
В структуре правой основной ветви выделяют три сегмента, располагающиеся вдоль трабекул (мышечных пучков) правого желудочка. Первый сегмент входит в миокард правого желудочка и направляется к основанию верхней сосочковой мышцы, второй следует вдоль септального пучка, третий — вдоль модераторного пучка к передней сосочковой мышце, где заканчивается волокнами Пуркинье.
Физиология проводящей системы сердца
Основными клетками миокарда являются кардиомиоциты. Существует три вида кардиомиоцитов — сократительные, проводящие и секреторные.
Сократительные (рабочие) кардиомиоциты образуют основную часть миокарда и способствуют сердечным сокращениям.
Проводящие кардиомиоциты — основные клетки проводящей системы сердца. Генерируют и проводят импульс к сократительным кардиомиоцитам. Пейсмейкерные (пейсмейкеры, синусные, P-клетки), переходные, проводящие (T-клетки) и клетки Пуркинье — разновидности проводящих кардиомиоцитов.
Секреторные (эндокринные) кардиомиоциты располагаются преимущественно в миокарде ушек предсердий и секретируют предсердный натрийуретический пептид, регулирующий обмен натрия в организме.
В аритмологии важно иметь представление о функционировании проводящих и сократительных кардиомиоцитов и их взаимодействии с физиологической точки зрения.
Физиология проводящих кардиомиоцитов
Пейсмейкерным клеткам проводящей системы сердца присуща уникальная функция автоматизма — способность к генерации электрического импульса при отсутствии внешних раздражителей.
Пейсмейкерные клетки могут быть обнаружены в СПУ, ПЖУ, ПЖП и волокнах Пуркинье. Для реализации своей функции им необходимы три иона — калия (K+), натрия (Na+) и кальция (Ca2+). Мембрана пейсмейкерного кардиомиоцита проницаема преимущественно для K+, который по градиенту концентрации стремится выйти из клетки. Оставшиеся в клетке отрицательно заряженные молекулы белков обусловливают общий отрицательный заряд, в связи с чем минимальные значения мембранного потенциала находятся в пределах —60 —70 Мв.
Ионные каналы Na+ пейсмейкеров всегда находятся в открытом состоянии. По градиенту концентрации Na+ проникает внутрь клетки, повышая значение мембранного потенциала. Этот процесс называется медленной диастолической деполяризацией.
Как только мембранный потенциал достигает значений —40 —50 Мв, открываются потенциал-зависимые ионные каналы Ca2+. Поступление Ca2+ в кардиомиоциты с большей скоростью повышает мембранный потенциал, реализуется потенциал действия пейсмейкера.
На уровне +10 мВ потенциал-зависимые каналы Ca2+ закрываются и открываются потенциал-зависимые каналы K+. K+ по градиенту концентрации стремится из клетки наружу, снижая мембранный потенциал до исходных —60 —70 Мв. Потенциал-зависимые каналы К+ закрываются, завершая процесс реполяризации клетки.
Цикл «медленная диастолическая деполяризация — потенциал действия — реполяризация» замыкается; понятия «потенциал покоя» для пейсмейкеров не существует.
Восстановление концентрации ионов в пейсмейкерном кардиомиоците происходит при помощи ионных насосов.
Na+—K+ насос, используя энергию аденозинтрифосфата, выводит три иона Na+ из клетки в обмен на два иона K+. Так восстанавливается концентрация Na+ и K+.
Ca2+ выводится из клетки двумя насосами: один из них использует энергию аденозинтрифосфата, второй — обменивает три иона Na+ на Ca2+.
Физиология сократительных кардиомиоцитов
Сократительные кардиомиоциты не способны к автоматизму, но активно возбуждаются проводящими кардиомиоцитами. Их работа также связана с ионами K+, Na+ и Ca2+.
Невозбужденные сократительные кардиомиоциты обладают потенциалом покоя. Большая проницаемость для ионов К+ по сравнению с остальными ионами обеспечивает отрицательный мембранный потенциал -80 -90 Мв.
Передача стимула на кардиомиоцит происходит путем перехода Na+ и Ca2+ от возбужденной клетки к невозбужденной через щелевидные соединения. Это повышает мембранный потенциал до —70 мВ, что приводит к открытию множества потенциал-зависимых каналов для Na+, наступает фаза быстрой деполяризации.
При значении мембранного потенциала +20 +30 мВ потенциал-зависимые Na-каналы закрываются и открываются потенциал-зависимые К+-каналы. Это фаза быстрой начальной реполяризации.
Постепенное открытие Ca2+-каналов клеточной мембраны и саркоплазматического ретикулума тормозит реполяризацию. K+ и Ca2+ «конкурируют» в своих попытках изменить мембранный потенциал, в связи с чем последний находится на изолинии и обусловливает фазу медленной реполяризации.
Со временем Ca2+-каналы закрываются, ток К+ из клетки начинает преобладать, а мембранный потенциал стремится к исходным значениям. Фаза быстрой конечной реполяризации переходит в потенциал покоя.
Восстановление концентрации ионов происходит аналогично проводящим кардиомиоцитам. В саркоплазматический ретикулум Ca2+ возвращается при помощи аденозинтрифосфат-насоса.
Взаимодействие кардиомиоцитов
Проводящие кардиомиоциты генерируют электрический импульс, но практически не способны к сокращению. Сократительные кардиомициты обладают противоположными свойствами. Для эффективной работы сердца у здорового человека происходит активное взаимодействие этих видов кардиомиоцитов.
Взаимодействие кардиомиоцитов возможно благодаря наличию между ними щелевидных соединений, за счет которых миокард формирует целостный функциональный синцитий. Когда пейсмейкерная клетка автоматически возбуждается, через щелевидные соединения ионы Ca2+ перемещаются в соседние проводящие кардиомиоциты, ускоряя их возбуждение. Переходя от клетки к клетке, импульс доходит до сократительного кардиомиоцита.
Сократительные кардиомиоциты выполняют две функции: во-первых, непосредственно сокращаются, во-вторых, передают волну возбуждения на соседние клетки рабочего миокарда. В данном случае, кроме ионов Ca2+, через щелевидные соединения проходят и ионы Na+. Проводящие кардиомиоциты возбуждаются и проводят электрический импульс значительно быстрее сократительных.
В здоровом сердце генерация импульса происходит в СПУ. Так как пейсмейкерные клетки встречаются не только в СПУ, другие элементы проводящей системы тоже способны к автоматизму. Если СПУ активен, пришедшая волна возбуждения подавляет автоматизм остальных отделов. Конкуренции за ритм не происходит из-за меньшей проницаемости для ионов Na+ и соответственно более продолжительной фазы медленной диастолической деполяризации ПЖУ, ПЖП и волокон Пуркинье.
Существует понятие физиологической задержки импульса в ПЖУ, объясняющееся особенностями его строения. Гистологически узел делится на три слоя. Проксимальный слой — преддверие ПЖУ — состоит из переходных клеток, отделенных друг от друга прослойками коллагена. Второй слой — собственно ПЖУ (компактный ПЖУ) — содержит как переходные, так и пейсмейкерные клетки. Третий слой—дистальная часть ПЖУ, непосредственно переходящая в ПЖП. Коллагеновые волокна и трехслойное строение ПЖУ обусловливают замедление проведения и возбуждения составляющих его кардиомиоцитов. Кроме этого, в ПЖУ выделяют быстрые и медленные каналы проведения, что значимо при рассмотрении патогенеза и тактики интервенционного лечения ряда тахиаритмий.
Патологические изменения в анатомии и физиологии проводящей системы сердца приводят к возникновению различных нарушений ритма и проводимости, а также их комбинаций. Некоторые из них корректируются консервативными методами, остальные — только оперативным вмешательством. Чтобы ориентироваться в проблеме электрокардиостимуляции, следует иметь представление о ее видах, показаниях и методике проведения имплантации ЭКС, а также потенциальных осложнениях этой процедуры.
Контрольные вопросы
1. Какие концепции развития проводящей системы сердца вы знаете?
2. Каково расположение СПУ?
3. Что такое треугольник Коха?
4. Сколько ветвей у ПЖП?
5. Какие виды кардиомиоцитов вы знаете?
6. Существует ли понятие потенциала покоя для проводящего кардиомиоцита?
7. Как взаимодействуют кардиомиоциты?
8. В чем различие распространения волны возбуждения между проводящими и сократительными кардиомиоцитами?
Книга "ЭКГ под силу каждому книга" - А. Щучко
ЭКГ с самых азов. В книге собрано огромное количество схем. Вся важная информация для запоминания выделена в отдельные рамки. Материал изложен доступным языком, последовательно. В книге есть дополнительная 11-я глава, посвященная синдрому преждевременного возбуждения желудочков. По мнению врачей, прочитавших книгу, всё предельно понятно, большое количество изображений и схем помогают в понимании ЭКГ.
Купить книгу "ЭКГ под силу каждому книга" - А. Щучко
Содержание книги "ЭКГ под силу каждому"
1. Введение
2. Зубцы, сегменты и интервалы ЭКГ
3. Алгоритм анализа ЭКГ
4. Нарушения ритма сердца: синусовые аритмии, экстрасистолии
5. Нарушения ритма сердца: несинусовые тахикардии и фибрилляции
6. Нарушения проводимости сердца: СА-блокады,
АВ-блокады, внутрипредсердные блокады
7. Нарушения проводимости сердца: блокады ножек пучка Гиса
8. Гипертрофии различных отделов сердца
9. Изменения ЭКГ при инфарктах
10. ЭКГ при различных локализациях инфаркта миокарда
11. Синдром преждевременного возбуждения желудочков
Купить книгу "ЭКГ под силу каждому книга" - А. Щучко
ЭКГ линейки для расшифровки ЭКГ
ЭКГ линейка Щучко измерительная для расшифровки электрокардиограммы
ЭКГ линейка деревянная для расшифровки электрокардиограммы
Купить деревянную ЭКГ линейку для расшифровки электрокардиограммы
ЭКГ линейка пластиковая, прозрачная ShopDon.ru – Г. А. Макагонов
Купить ЭКГ линейку пластиковую прозрачную ShopDon.ru – Г. А. Макагонов
0 комментариев